
- •Работа № 1. Выборки и их представление Основные понятия
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Работа №2. Предельные теоремы.
- •Теорема Бернулли
- •1. Выполнение в пакете Statistica
- •2) Выполнение в пакете spss
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Сжатие распределения с ростом числа слагаемых.
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Усиленный закон больших чисел.
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss.
- •Теорема Гливенко основная теорема статистики
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss.
- •Центральная предельная теорема
- •Одинаково распределенные слагаемые.
- •1) Выполнение в пакете statistica
- •2. Выполнение в пакете spss.
- •Различно распределенные слагаемые
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Работа № 3. Оценки
- •Постановка конкретной задачи.
- •Теоретическое сравнение оценок
- •Статистическое сравнение оценок
- •Задание для самостоятельной работы
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Работа n4. Доверительные границы и интервалы
- •Определения и построение интервалов
- •Уровень доверия
- •Интервалы для параметров нормального распределения
- •Задание на самостоятельную работу
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Работа № 5. Критерий "хи-квадрат" проверки гипотез
- •Проверка простой гипотезы о вероятностях
- •Проверка сложной гипотезы о вероятностях
- •Проверка гипотезы о типе распределения
- •1. Выполнение в пакете statistica
- •Примеры проверки простой гипотезы о распределении
- •1. Выполнение в пакете statistica
- •Проверка гипотезы о независимости признаков (таблица сопряженности признаков)
- •1. Выполнение в пакете statistica
- •Проверка гипотезы об однородности выборок
- •1. Выполнение в пакете statistica
- •Задание
- •Работа № 6. Различение двух простых гипотез. Различение при фиксированном объеме наблюдений
- •Последовательное различение двух простых гипотез (последовательный анализ Вальда).
- •Задание
- •1. Выполнение в пакете staTiStica
- •Оценка вкладов. Если гипотеза ha отклоняется, следует оценить вклады aj уровней фактора; оценка
- •1. Выполнение в пакете statistica
- •Работа № 8. Линейный регрессионный анализ
- •1. 1. Простая линейная регрессия
- •2.2. Множественная регрессия
- •3. 3. Нелинейная зависимость
- •4.4. Нелинейная зависимость (обобщение)
- •Литература
1. Выполнение в пакете statistica
Выполнение аналогично предыдущему.
Отличия от предыдущего: 1) в окне Fitting Continuous Distribution нужно ввести значения параметров распределения (вместо их оценок) и, возможно, поправить параметры группировки; 2) приводимый результат для уровня значимости р не соответствует рассматриваемому случаю, так как число степеней свободы d.f. должно быть равным m -1; пакет же указывает с учетом числа оцениваемых параметров. Нужное значение для р получим в модуле Basic Statistics and Tables в Probability calculator.
Пример 3. В опытах по генетике Мендель наблюдал частоты появления различных видов семян, получаемых при скрещивании гороха с круглыми желтыми и с морщинистыми зелеными семенами [2]. Частоты приведены в таблице 3 вместе с теоретическими вероятностями.
Таблица 3. Частоты видов семян.
Семена |
Наблюдаемая частота, i |
Теоретическая вероятность, pi |
Круглые и желтые Морщинистые и желтые Круглые и зеленые Морщинистые и зеленые |
315 101 108 32 |
9/16 3/16 3/16 1/16 |
Сумма |
n = 556 |
|
Формула (1) дает X2 = 0.47. При числе степеней свободы m-1 = 3
P{
0.47 } = 0.92,
так что между наблюдениями и теорией имеется очень хорошее согласие: критерий с любым уровнем значимости 0.92 не отвергал бы эту гипотезу.
Проверка гипотезы о независимости признаков (таблица сопряженности признаков)
Предположим, имеется большая совокупность объектов, каждый из которых обладает двумя признаками А и В; признак А имеет m уровней: A1, ..., Am, а признак В – k уровней: B1, ..., Bk . Пусть уровень Аi встречается с вероятностью P(Ai), а уровень Bj - c вероятностью P(Bj). Признаки А и В независимы, если
P(Ai Bj) = P(Ai)P(Bj), i = 1, ..., m, j = 1, ..., k , (10)
т.е. вероятность
встретить комбинацию Ai
Bj
равна произведению вероятностей. Пусть
признаки определены на n
объектах, случайно извлеченных из
совокупности; ij
- число объектов, имеющих комбинацию Ai
Bj,
=n.
По совокупности наблюдений {ij
} (таблица
m
k) требуется
проверить гипотезу Н
о независимости признаков А
и В.
Задача сводится к случаю с неизвестными
параметрами; ими являются вероятности
P(Ai), i = 1, ..., m; P(Bj), j = 1, ..., k,
всего (m-1) + (k-1); их оценки:
,
(в обозначениях точка означает суммирование по соответствующему индексу), и статистика (6) принимает вид:
.
(11)
Если гипотеза Н верна, то по теореме Фишера асимптотически распределена по закону хи-квадрат с числом степеней свободы
f = mk - 1 - (m - 1) - (k - 1) = (m - 1)(k - 1),
и потому, если
,
(12)
то гипотезу о независимости признаков следует отклонить.
Ясно, что по (11) - (12) можно проверять независимость двух случайных величин, разбив диапазоны их значений на m и k частей.
Пример 4. Данные [2], собранные по ряду школ, относительно физических недостатков школьников (P1, P2, P3 - признак А) и дефектов речи (S1, S2, S3 - признак В) приведены в таблице 4. В таблице 5 даны частоты.
Для проверки
гипотезы о независимости этих двух
признаков вычислим статистику (11):
= 34.88; число степеней свободы f
= (3-1)(3-1)
= 4; минимальный уровень значимости
;
это значит, что при независимых признаках вероятность получить значение такое же, как в опыте или большее, меньше 0.001, и потому гипотезу о независимости следует отклонить.