Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
SPOD_lek.doc
Скачиваний:
1
Добавлен:
08.01.2020
Размер:
2.81 Mб
Скачать

1. Выполнение в пакете statistica

Выполнение аналогично предыдущему.

Отличия от предыдущего: 1) в окне Fitting Continuous Distribution нужно ввести значения параметров распределения (вместо их оценок) и, возможно, поправить параметры группировки; 2) приводимый результат для уровня значимости р не соответствует рассматриваемому случаю, так как число степеней свободы d.f. должно быть равным m -1; пакет же указывает с учетом числа оцениваемых параметров. Нужное значение для р получим в модуле Basic Statistics and Tables в Probability calculator.

Пример 3. В опытах по генетике Мендель наблюдал частоты появления различных видов семян, получаемых при скрещивании гороха с круглыми желтыми и с морщинистыми зелеными семенами [2]. Частоты приведены в таблице 3 вместе с теоретическими вероятностями.

Таблица 3. Частоты видов семян.

Семена

Наблюдаемая

частота, i

Теоретическая

вероятность, pi

Круглые и желтые

Морщинистые и желтые

Круглые и зеленые

Морщинистые и зеленые

315

101

108

32

9/16

3/16

3/16

1/16

Сумма

n = 556

Формула (1) дает X2 = 0.47. При числе степеней свободы m-1 = 3

P{  0.47 } = 0.92,

так что между наблюдениями и теорией имеется очень хорошее согласие: критерий с любым уровнем значимости   0.92 не отвергал бы эту гипотезу.

Проверка гипотезы о независимости признаков (таблица сопряженности признаков)

Предположим, имеется большая совокупность объектов, каждый из которых обладает двумя признаками А и В; признак А имеет m уровней: A1, ..., Am, а признак Вk уровней: B1, ..., Bk . Пусть уровень Аi встречается с вероятностью P(Ai), а уровень Bj - c вероятностью P(Bj). Признаки А и В независимы, если

P(Ai Bj) = P(Ai)P(Bj), i = 1, ..., m, j = 1, ..., k , (10)

т.е. вероятность встретить комбинацию Ai Bj равна произведению вероятностей. Пусть признаки определены на n объектах, случайно извлеченных из совокупности; ij - число объектов, имеющих комбинацию Ai Bj, =n. По совокупности наблюдений {ij } (таблица m k) требуется проверить гипотезу Н о независимости признаков А и В. Задача сводится к случаю с неизвестными параметрами; ими являются вероятности

P(Ai), i = 1, ..., m; P(Bj), j = 1, ..., k,

всего (m-1) + (k-1); их оценки:

,

(в обозначениях точка означает суммирование по соответствующему индексу), и статистика (6) принимает вид:

. (11)

Если гипотеза Н верна, то по теореме Фишера асимптотически распределена по закону хи-квадрат с числом степеней свободы

f = mk - 1 - (m - 1) - (k - 1) = (m - 1)(k - 1),

и потому, если

, (12)

то гипотезу о независимости признаков следует отклонить.

Ясно, что по (11) - (12) можно проверять независимость двух случайных величин, разбив диапазоны их значений на m и k частей.

Пример 4. Данные [2], собранные по ряду школ, относительно физических недостатков школьников (P1, P2, P3 - признак А) и дефектов речи (S1, S2, S3 - признак В) приведены в таблице 4. В таблице 5 даны частоты.

Для проверки гипотезы о независимости этих двух признаков вычислим статистику (11): = 34.88; число степеней свободы f = (3-1)(3-1) = 4; минимальный уровень значимости

;

это значит, что при независимых признаках вероятность получить значение такое же, как в опыте или большее, меньше 0.001, и потому гипотезу о независимости следует отклонить.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]