
- •Работа № 1. Выборки и их представление Основные понятия
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Работа №2. Предельные теоремы.
- •Теорема Бернулли
- •1. Выполнение в пакете Statistica
- •2) Выполнение в пакете spss
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Сжатие распределения с ростом числа слагаемых.
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Усиленный закон больших чисел.
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss.
- •Теорема Гливенко основная теорема статистики
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss.
- •Центральная предельная теорема
- •Одинаково распределенные слагаемые.
- •1) Выполнение в пакете statistica
- •2. Выполнение в пакете spss.
- •Различно распределенные слагаемые
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Работа № 3. Оценки
- •Постановка конкретной задачи.
- •Теоретическое сравнение оценок
- •Статистическое сравнение оценок
- •Задание для самостоятельной работы
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Работа n4. Доверительные границы и интервалы
- •Определения и построение интервалов
- •Уровень доверия
- •Интервалы для параметров нормального распределения
- •Задание на самостоятельную работу
- •1. Выполнение в пакете statistica
- •2. Выполнение в пакете spss
- •Работа № 5. Критерий "хи-квадрат" проверки гипотез
- •Проверка простой гипотезы о вероятностях
- •Проверка сложной гипотезы о вероятностях
- •Проверка гипотезы о типе распределения
- •1. Выполнение в пакете statistica
- •Примеры проверки простой гипотезы о распределении
- •1. Выполнение в пакете statistica
- •Проверка гипотезы о независимости признаков (таблица сопряженности признаков)
- •1. Выполнение в пакете statistica
- •Проверка гипотезы об однородности выборок
- •1. Выполнение в пакете statistica
- •Задание
- •Работа № 6. Различение двух простых гипотез. Различение при фиксированном объеме наблюдений
- •Последовательное различение двух простых гипотез (последовательный анализ Вальда).
- •Задание
- •1. Выполнение в пакете staTiStica
- •Оценка вкладов. Если гипотеза ha отклоняется, следует оценить вклады aj уровней фактора; оценка
- •1. Выполнение в пакете statistica
- •Работа № 8. Линейный регрессионный анализ
- •1. 1. Простая линейная регрессия
- •2.2. Множественная регрессия
- •3. 3. Нелинейная зависимость
- •4.4. Нелинейная зависимость (обобщение)
- •Литература
Уровень доверия
Уровень доверия РД означает, что правило определения интервала дает верный результат с вероятностью РД, которая обычно выбирается близкой к 1, однако, 1 не равно.Убедимся статистически на примере в том, что доверительный интервал с уровнем доверия РД может не содержать (с малой вероятностью 1- РД ) истинное значение параметра.
Пример. рассмотрим приведенный в (5) случайный интервал I(x1, ..., xn), который при любом значении а накрывает это значение с большой вероятностью РД:
Р{I(x1,...,xn) a} = РД ,
и потому, если пренебречь возможностью осуществления события aI, имеющего малую вероятность (1-РД), можно считать событие aI(x1,...,xn) практически достоверным, т.е. можно верить тому, что вычисленный по конкретным наблюдениям x1,...,xn интервал I содержит неизвестное значение параметра а.
Испытаем интервал (5) на 50 выборках объема n=10 для трех уровней доверия РД : 0.9 , 0.99 , 0.999 (соответственно, три значения fp) .
При РД = 0.9 число неверных из k =50 результатов окажется в окрестности 5, так как среднее число неверных
k(1- РД) = 5;
при РД =0.99 появление хотя бы одного неверного из k =50 весьма вероятно: вероятность этого события
1- РДk=1-0.9950 0.61;
при РД =0.999 появление хотя бы одного неверного весьма сомнительно: вероятность этого события
1- РДk=1-0.99950 0.05.
Задание.
1. Определить, сколько раз из k =50 доверительный интервал оказался неверным;.это сделаем для трех значений РД . Графики для РД =0.9 и РД =0.99 распечатать. Выполнение в пакетах см. в пп. 2 - 4.
2. Провести аналогично 50 испытаний доверительного интервала (7) - (9) для случая неизвестной дисперсии.
Интервалы для параметров нормального распределения
Пусть х1, … ,хn - выборка из нормального N(a,2) распределения; значения среднего а и дисперсии 2 неизвестны. Оценки для а и 2:
,
.
(7)
Как известно, доверительным интервалом для среднего а с уровнем доверия РД при неизвестной дисперсии является интервал
I(x) = (a1(х), a2(х) ), (8)
где
,
, (9)
tp
- квантиль
порядка (1+ РД)/2
распределения Стьюдента с n-1
степенями свободы.
Доверительным интервалом для стандартного отклонения с уровнем доверия РД является интервал
I (x)=(1(х), 2(х)) , (10)
где
,
, (11)
t1 и t2- квантили порядков соответственно (1+ РД)/2 и (1- РД)/2 распределения хи-квадрат с n-1 степенями свободы.
Сгенерируем выборку объема n=20 из нормального распределения с параметрами a =10, 2=22=4 и определим доверительные интервалы для a и с уровнем доверия РД : 0.8 , 0.9 , 0.95 , 0.98 , 0.99 , 0.995 , 0.998 , 0.999. Результаты выпишем в виде таблицы. C ростом РД интервал расширяется, с ростом n - уменьшается.
Выполнение см. в пп. 2 - 4.
Если нас интересуют не интервалы, а верхние или нижние доверительные границы, то, как известно, они определяются теми же формулами (9) и (11), однако, значения порогов t изменяются. Например, нижней доверительной границей для a с уровнем доверия РД является значение
,
где tp - квантиль порядка РД распределения Стьюдента с n-1 степенями свободы, а верхней границей для с уровнем доверия РД является
,
где t2 - квантиль порядка 1- РД распределения хи-квадрат с n-1 степенями свободы.
Задание: определить верхние доверительные границы для а и с уровнем доверия РД = 0.95 .