
- •1. Формирование представлений о корпускулярно-волновой природе света
- •1.1. Теория световых корпускул XVII-XIX вв. Элементарные законы геометрической оптики
- •Теория световых корпускул была отвергнута в первой половине XIX столетия после открытия явления интерференции и создания волновой теории света.
- •1.2. Волновая теория света в XVIII-XIX вв
- •1.3. Электромагнитная теория света
- •2. Интерференция световых волн
- •2.1. Понятие о когерентности
- •2.2. Расчет интерференционной картины от двух
- •2.3. Способы получения когерентных волн
- •2.4. Пространственная и временная когерентность
- •2.5. Интерференция в тонких пленках
- •2.5.1. Интерференция в плоскопараллельных пластинках
2.3. Способы получения когерентных волн
Очевидно, что получить когерентные волны от двух независимых источников света практически невозможно. Это связано с тем, что свет атомом излучается в процессе перехода электронов атома с одного энергетического уровня на другой. Момент такого перехода носит вероятностный характер, соответственно, случайна фаза излучаемой атомом электромагнитной волны. Излучение источника складывается из совокупности излучений отдельных атомов и фаза его, естественно, меняется случайным образом. Следовательно, независимые источники излучают световые волны, разность фаз которых меняется хаотично.
Рис.2.3
Схема Юнга. Пучок света падает на непрозрачный экран с узкой щелью (рис.2.3). Прошедшим светом освещаются две узкие параллельные щели во втором непрозрачном экране. На этих щелях свет испытывает дифракцию, в результате чего за щелями получаются два расходящихся световых пучка. Эти пучки когерентные, т.к. исходят от одного источника. В области их перекрытия АВ наблюдается интерференционная картина.
Бизеркала Френеля. Два плоских соприкасающихся зеркала (рис.1.2) установлены так, что угол между их плоскостями близок к 180О. Зеркала освещаются светом от источника S (как правило, в качестве источника берется узкая светящаяся щель, ориентированная параллельно линии соединения зеркал). При отражении от зеркал падающий свет разделяется на две когерентные цилиндрические волны, распространяющиеся так, как если бы они исходили из мнимых источников S1 и S2, являющихся изображением источника в каждом из зеркал. На экране, где волны перекрываются, наблюдается интерференционная картина.
Рис.2.4
Рис.2.5
Рис.2.6
Во всех (кроме последнего) рассмотренных выше способах получения когерентных волн расчет параметров интерференционной картины сводится к уже изученному нами случаю двух когерентных источников (п.2.2). Надо только в формуле (2.14) использовать расстояние между источниками S1 и S2 и расстояние от источников до экрана, найденные с учетом особенностей геометрии каждого конкретного случая.