Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Понятие симметрии в естествознании.rtf
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
336.96 Кб
Скачать

Введение

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все, без исключения, направления современной науки. Принципы симметрии играют важную роль в биологии и химии, физике и математике, живописи и скульптуре, поэзии и музыке. Законы природы, в свою очередь, подчиняются принципам симметрии.

Главенствующую роль в теории играет плоскость симметрии. Комбинируя зеркальные отражения, можно вывести все возможные симметричные операции. Исходя из этих комбинаций, можно полностью вывести все элементы классической симметрии - простые, сложные и винтовые оси, плоскости простого и скользящего отражения, трансляции. Совокупности таких элементов образуют виды симметрии (например, 32 класса для кристаллических многогранников, 230 пространственных групп для кристаллических структур). Как видно, именно плоскость симметрии лежит в основании всего здания симметричной теории.

Существует множество теорий относительно принципа симметрии. Так, например, известный математик начала ХХ века Джордж Дэвид Беркофф из Гарвардского университета вывел математическую формулу для измерения красоты и притягательности произведений искусства. В формуле присутствуют два абстрактных понятия - сложность и упорядоченность (или симметрия). Согласно теории Беркоффа, сложный объект более привлекателен с эстетической точки зрения, если он менее симметричен, и наоборот, симметричный объект должен быть простым по строению. Но метод измерения степени сложности и симметричности объекта, предложенный Беркоффом, показался ученым слишком субъективными, и формула вскоре была забыта.

Однако идея Беркоффа о том, что симметрия является определяющим фактором эстетической притягательности объекта искусства, нашла свое подтверждение в науке. Последние исследования в области биологии доказали, что человека и других животных привлекают особи противоположного пола с наиболее симметричным строением тела. Следовательно, можно предположить, что стремление к симметрии заложено в человеке природой.

Итак, в современном понимании симметрия - это общенаучная философская категория, характеризующая структуру организации систем. Важнейшим свойством симметрии является сохранение (инвариантность) тех или иных признаков (геометрических, физических, биологических и т. д.) по отношению к вполне определенным преобразованиям. Математическим аппаратом изучения симметрии сегодня является теория групп и теория инвариантов.

1. Понятие симметрии. Виды симметрии

Слово симметрия имеет греческое происхождение и переводится как соразмерность, пропорциональность, одинаковость в расположении частей.

Симметрия предполагает неизменность какого-либо объекта (или его свойств)по отношению к тем или иным преобразованиями, которые выполняются над объектом.

Так, например, бабочка симметрична по отношению к отражению в воображаемом зеркале, разделяющем бабочку пополам вдоль ее туловища. Равносторонний треугольник симметричен по отношению к повороту на 120 градусов вокруг оси, проходящей через его центр масс (точка пересечения меридиан) и перпендикулярной к плоскости треугольника. Такие объекты, как, например, полимерные цепные молекулы белков (объекты, вытянутые вдоль какого-либо направления), симметричны по отношению к переносу (смещению) вдоль него на некоторое расстояние.

Познавая качественное многообразие проявлений порядка и гармонии в природе, мыслители древности, особенно греческие философы, пришли к выводу о необходимости выразить симметрию и в количественных отношениях, при помощи геометрических построений и чисел.

Симметрия форм предметов природы как выражение пропорциональности, соразмерности, гармонии подавляла древнего человека своим совершенством, и это было использовано религией, различными представлениями мистицизма, пытавшимися истолковать наличие симметрии в объективной действительности для доказательства всемогущества богов, якобы вносящих порядок и гармонию в первоначальный хаос. Так, в учении пифагорейцев симметрия, симметричные фигуры и тела (круг и шар) имели мистическое значение, являлись воплощением совершенства.

В широком смысле симметрия означает инвариантность как неизменность свойств системы при некотором изменении (преобразовании) ее параметров. Наглядным примером пространственных симметрий физических систем является кристаллическая структура твердых тел. Симметрия кристаллов – закономерность атомного строения, внешней формы и физических свойств кристаллов, заключающаяся в том, что кристалл может быть совмещен с самим собой путем поворотов, отражений, параллельных переносов и других преобразований симметрии.

Орнамент – наверное, самое древнее отображение идеи симметрии, лежащей в основе многих фундаментальных законов.

Следует выделить аспекты, без которых симметрия невозможна:

1) объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.

2) некоторые признаки - величины, свойства, отношения, процессы, явления - объекта, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными или инвариантами.

3) изменения (объекта), которые оставляют объект тождественным самому себе по инвариантным признакам; такие изменения называются преобразованиями симметрии;

4) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих его изменений.

Существует несколько основных типов преобразования симметрии. В первом случае говорят о зеркальной, во втором – о поворотной и в третьем – о переносной (трансляционной) симметрии.

В конформной (круговой) симметрии главным преобразованием является инверсия относительно сферы.

Конформная симметрия обладает большой общностью. Все известные преобразования симметрии: зеркальные отражения, повороты, параллельные сдвиги представляют собой лишь частные случаи конформной симметрии.

Главная особенность конформного преобразования состоит в том, что оно всегда сохраняет углы фигуры и сферу и всегда переходит в сферу другого радиуса.

Известно, что кристаллы какого-либо вещества могут иметь самый разный вид, но углы между гранями всегда постоянны.

Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. В то время как симметричные фигуры полностью соответствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо.

Существуют языки, в которых начертание знаков опирается на наличие симметрии. Так, в китайской письменности используется иероглиф, который означает именно истинную середину.

В архитектуре оси симметрии используются как средства выражения архитектурного замысла. В технике оси симметрии наиболее четко обозначаются там, где требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля.

Вообще, принцип симметрии очень часто используется в искусстве. Так, на мозаике Киевского собора св. Софии под знаменитой Орантой изображены два зеркально-симметричных Христа, обращенных лицом к ученикам. Примером удивительного сочетания симметрии и асимметрии является Покровский собор (храм Василия Блаженного) на Красной площади в Москве. Эта причудливая композиция из десяти храмов, каждый из которых обладает центральной симметрией, в целом не имеет ни зеркальной, ни поворотной симметрии.

В пространстве существуют тела, обладающие винтовой симметрией, т.е. совмещаемые со своим первоначальным положением после поворота на какой-либо угол вокруг оси, дополненного сдвигом вдоль той же оси. Если данный угол поделить на 360 градусов - рациональное число, то поворотная ось оказывается также осью переноса.