Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
75
Добавлен:
26.05.2014
Размер:
19.46 Кб
Скачать

Непрерывность дифференцируемой функции:

Всякая функция, имеющая производ­ную (конечную!) в точке х, непрерывна в этой точке. В самом деле, пусть предел (1) существует в точке х и конечен. Этот факт можно записать следующим образом: y/x=f'(x)+ (x) (2), где (x)0 при х0, т.е. (x) есть бесконечно малая при x0. Из (2) следует: y=f'(х)х+x(x). Переходя в этом равенстве к пределу, когда x0, получим limx0y=0, это показ., что f непрерывна в точке х.