
- •1. Информатика как единство науки и технологии
- •2. Цели и задачи курса "Информатика"
- •4. Информация, её виды и свойства.
- •5. Различные уровни представления информации.
- •6. Носители данных. Операции с данными.
- •7. Функции, отношения, множества.
- •8. Булева алгебра и логические схемы компьютера. Логические машины.
- •9. Основы логики: Логика высказываний, логические языки, таблица истинности.
- •10. Графы и деревья.
- •11. Обзор и история архитектуры компьютеров.
- •12. Логические элементы компьютера: вентили, триггеры, счетчики, регистры
- •14. Представление числовых данных
- •15. Системы счисления. Правила перевода чисел из одной системы счисления в другую.
- •16. Знаковые представления и представления в дополнительном коде.
- •17. Представление нечисловых данных.
- •18. Организация машины.
- •19. Устройство ввода и вывода
- •20. Устройство памяти компьютера.
- •Характеристики систем иерархической памяти
- •22. Организация основной памяти и операции.
- •23. Виртуальная память.
- •Классификация по
- •Прикладное по
- •Виды Алгоритмов
- •Свойства Алгоритмов
- •27. Концепция и свойства алгоритмов.
- •Общая концепция алгоритма
- •28. Структура данных (типы, массив, строки).
- •Операции над строками
- •Основные типы данных.
- •Определение
- •Необходимость использования типов данных
- •Базовые типы
- •Числовые типы
- •Вещественные типы
- •2.2. Битовые типы
- •Логический тип
- •29. Стратегия реализации алгоритмов.
- •30. Блок схема. Виды Блок схем.
- •Основные элементы схем алгоритма
- •31. Способы представления алгоритмов.
- •32. Алгоритмические структуры.
- •33. Основные вычислительные алгоритмы: машина Тьюринга, легко и трудно решаемые задачи.
- •Устройство машины Тьюринга
- •Описание машины Тьюринга
- •Варианты машины Тьюринга
- •34. Анализ алгоритмов.
- •Анализ трудоёмкости алгоритмов
- •35. Архитектура организации процессора. Типовые структуры операционного блока микропроцессора
- •36. Организация системы адресации и команд
- •39. Основы дискретной математики. Элементы теории множеств. Комбинаторика.
- •Математическая логика.
- •Теория алгоритмов.
- •Теория графов.
- •Алгоритмы.
- •40. Этапы решения задач на эвм.
9. Основы логики: Логика высказываний, логические языки, таблица истинности.
Логика Высказываний, Или Пропозициональная Логика
- раздел логики, формализующий употребление логических связок "и", "или", "не", "если, то" и т. п., служащих для образования сложных высказываний из простых. Высказывание называется простым, если оно не включает в себя другие высказывания, в противном случае оно называется сложным. В Л. в. простые высказывания рассматриваются в отвлечении от их внутренней (субъектно-предикатной) структуры. Та или иная истинностная оценка высказывания именуется его истинностным значением. В логике классической предполагается, что простое высказывание является либо истинным, либо ложным (см.: Двузначности принцип) и что истинностное значение сложного высказывания зависит только от истинностных значений входящих в него простых высказываний и характера их связи. Так, соединение двух высказываний с помощью связки "и" дает сложное высказывание (именуемое конъюнкцией), являющееся истинным, только когда оба составляющие его высказывания истинны. Сложное высказывание, образованное с помощью связки "или" (дизъюнкция), истинно, если и только если хотя бы одно из двух входящих в него высказываний истинно. Сложное высказывание, образованное с помощью "не" (отрицания), истинно, если только исходное высказывание ложно. Сложное высказывание, полученное из двух высказываний с помощью связки "если, то" (импликация), истинно в трех случаях: оба входящие в него высказывания истинны, оба они ложны, первое из этих высказываний (следующее за словом "если") ложно, а второе (следующее за словом "то") истинно; импликация является ложной только когда первое из составляющих ее высказываний истинно, а второе ложно. Возможны и другие способы образования сложных высказываний. Всего в классической двузначной логике четыре способа образования сложного высказывания из одного высказывания и шестнадцать способов образования сложного высказывания из двух высказываний. Язык Л. в. включает бесконечное множество переменных: р, q, r,..., p1, q1, r1, ..., представляющих высказывания, и особые символы для логических связок : & - конъюнкция ("и"), v - дизъюнкция ("или"), ~ - отрицание ("не" или "неверно, что"), -> - импликация ("если, то"). Роль знаков препинания обычного языка играют скобки. Понятие формулы в Л. в. определяется так: отдельная переменная является формулой; если A и В - формулы, то (А&В), (AvB), ~A и (A->B) также формулы. Формулам Л. в., образованным из переменных и связок, в естественном языке соответствуют предложения. Напр., если р есть высказывание "Сейчас ночь", q - высказывание "Сейчас темно" и r - высказывание "Сейчас ветрено", то формула (p->(qvr)) представляет высказывание "Если сейчас ночь, то сейчас темно или ветрено", формула ((q&.r)->p) - высказывание "Если сейчас темно и ветрено, то сейчас ночь", формула (~q->~p) - высказывание: "Если неверно, что сейчас темно, то сейчас не ночь" и т. п. Подставляя вместо переменных другие высказывания, получим другие переводы указанных формул на обычный язык. Каждой формуле Л. в. можно поставить в соответствие таблицу истинности, указывающую зависимость истинностного значения формулы от истинностных значений входящих в нее переменных. Напр., формула (~q->~p) принимает значение "ложно" только в случае ложности q и истинности р. Формула Л. в. называется тождественно-истинной, или тавтологией, если и только если она принимает значение "истинно" при всех распределениях истинностных значений входящих в нее простых высказываний. Формула, принимающая при всех распределениях значение "ложно", называется противоречием. Тавтологии выражают логические законы. К тавтологиям относятся, в частности, формулы: (р->р) - закон тождества, ~(р&~р) - закон непротиворечия, (pv~p) - закон исключенного третьего, (p->q)->(~q->~p) - закон контрапозиции. Множество тавтологий бесконечно. Л. в. может быть представлена также в форме логического исчисления, в котором задается способ доказательства некоторых высказываний (формул), называемых теоремами. Исчисление может быть формализовано с помощью аксиоматического метода. При этом указываются формулы, принимаемые в качестве аксиом, и задаются правила вывода, позволяющие получать из аксиом теоремы. Аксиоматическое исчисление высказываний строится таким образом, чтобы класс теорем совпадал с классом тавтологий, т. е. чтобы каждая теорема была тавтологией и каждая тавтология - теоремой (см.: Полнота). По отношению к аксиоматическому построению встают также вопросы о его непротиворечивости и независимости принятых аксиом и правил вывода. Наряду с классической Л. в., предполагающей, что всякое высказывание является истинным или ложным, существуют многообразные неклассические Л. в. В числе последних - многозначные Л. в., интуиционистская Л. в. и др.
Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.
Логика высказываний (или пропозициональная логика) — это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логику нулевого порядка. Логика высказываний является простейшей логикой, максимально близкой к человеческой логике неформальных рассуждений и известна ещё со времён античности.
Законы логики высказываний
1. А <=> A закон двойного отрицания;
2. A&B <=> B&A коммутативность конъюнкции;
3. AVB <=> BVA коммутативность дизъюнкции;
4. A&(B&C) <=> (A&B)&C ассоциативность конъюнкции;
5. AV(BVC) <=> (AVB)VC ассоциативность дизъюнкции;
6. A&(BVC) <=> (A&B)V(A&C) дистрибутивность конъюнкции относительно дизъюнкции;
7. AV(B&C) <=> (AVB)&(AVC) дистрибутивность дизъюнкции относительно конъюнкции;
8. A&A <=> A
9. AVA <=> A
1O. AVA <=> И закон исключенного третьего;
11. A&A <=> Л закон не противоречия;
12. A&И <=> A
13. AVИ <=> И
14. A&Л <=> Л
15. AVЛ <=> A
16. (A&B) <=> A V B законы де Моргана;
17. (AVB) <=> A & B
18. A => B <=> A V B замена импликации.
Язык Логики
— специально создаваемый современной логикой для своих целей язык, способный следовать за логической формой рассуждения и воспроизводить ее даже в ущерб краткости и легкости общения. Я. л. является языком формализованным. Построение его предполагает принятие особой теории логического анализа. Логика традиционная пользовалась для описания правильного мышления обычным языком, дополненным немногими специальными символами. Этот язык имеет, однако, целый ряд черт, мешающих ему точно передавать форму мысли. Он является аморфным как со стороны своего словаря, так и в отношении правил построения выражений и придания им значений. В нем нет четких критериев осмысленности утверждений. Не выявляется строго логическая форма рассуждений. Значения отдельных слов и выражений зависят не только от них самих, но и от их окружения. Многие соглашения относительно употребления слов не формулируются явно, а только предполагаются. Почти все слова имеют не одно, а несколько значений. Одни и те же объекты порой могут называться по-разному или иметь несколько имен. Есть слова, не обозначающие никаких объектов, и т. д. Все это не означает, что обычный язык никуда не годен и его следует заменить какой-то искусственной символикой. Он вполне справляется с многообразными своими функциями. Но, решая многие задачи, он лишается способности точно передавать логическую форму. Для целей логики необходим искусственный язык, строящийся по строго сформулированным правилам. Этот язык не предназначен для общения, он должен служить только одной задаче - выявлению логических связей наших мыслей, но решаться она должна эффективно. В формализованном Я. л. слова обычного языка заменяются различными специальными символами. В нем четко разграничены синтаксическая и семантическая части, разделение которых в обычном языке во многом условно. Вначале язык логики строится без всякой ссылки на ту действительность, которую он будет описывать. И только потом вводятся правила придания значений употребляемым в нем комбинациям знаков, указывается его интерпретация. Построение языка отличается тщательностью, с какой формулируются синтаксические и семантические правила, отсутствием неправильностей и исключений. Разделение синтаксиса и семантики позволяет определить понятие вывода логического чисто формально, не обращаясь к содержанию конструируемых и преобразуемых выражений. Вывод оказывается подчиненным простым предписаниям, подобным правилам сложения и вычитания. Исчезают неясность и двусмысленность, всегда присутствующие при обращении с такой трудно уловимой вещью, как «смысл выражения». Место обычного в процессе рассуждения оперирования идеальными смыслами занимает манипулирование материальными вещами — цепочками знаков. Выведение одних идей из других превращается в «вычисление» по простым правилам. Научная революция в логике во второй половине XIX — начале XX в. привела к созданию логически совершенного языка. Последний сделал возможным дальнейшее углубленное изучение и описание закономерностей правильного мышления.
Логическое программирование в первую очередь ассоциируется с языком Prolog. Prolog гораздо менее распространенный и известный язык, чем COBOL, Fortran или С.
Логические языки, как предполагается их названием, для целей передачи смысла программ используют средства математической логики. Сама по себе логика была изобретена как инструмент человеческой мысли, позволяющий упорядочить знания и получить из них соответствующие выводы. Поэтому кажется довольно естественным прибегнуть к логике и для программирования компьютеров.
Таблица истинности – это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию, и значениями функции. Таблица, с помощью которой устанавливается истинностное значение сложного высказывания при данных значениях входящих в него простых высказываний. В классической математической логике предполагается, что каждое простое (не содержащее логических связок) высказывание является либо истинным, либо ложным, но не тем и другим одновременно. Нам не известно, истинно или ложно данное простое высказывание, чтобы установить это, потребовалось бы обратиться к фактам действительности, но логика этого не делает.