Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
raspKollokvium_po_Informatike.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
792.06 Кб
Скачать

8. Булева алгебра и логические схемы компьютера. Логические машины.

Алгебра логики – это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.

Создателем алгебры логики является английский математик Джордж Буль (19 век), в честь которого она названа булевой алгеброй высказываний

Логические схемы

Во всех современных компьютерах применяется логическая система, изобретенная Джорджем Булем. Тысячи микроскопических электронных переключателей в кристалле интегральной схемы сгруппированы в системы «вентилей», выполняющих логические операции, т.е. операции с предсказуемыми результатами. На приведенных здесь рисунках показаны элементарные логические вентили И, ИЛИ и НЕ. Все остальные логические схемы компьютера могут быть построены на основе вентилей этих трех типов.

Соединенные в различные комбинации, логические вентили дают возможность компьютеру решать задачи с помощью закодированных импульсов его двоичного языка. На вход каждого логического вентиля поступают электрические сигналы высокого и низкого уровней напряжения, которые он интерпретирует в зависимости от своей функции и выдает один выходной сигнал также либо низкого, либо высокого уровня. Эти уровни соответствуют одному из состояний двоичной системы: да - нет, единица - ноль, истина - ложь. Простой вентиль И, например, выдает на выходе 1 в том и только том случае, когда на все его входы поступает 1, что соответствует логическому значению «истина». Действуя в соответствии с определенными правилами, логические вентили координируют движение данных и выполнение инструкций в компьютере. Так, определенный элемент данных может пройти от одного блока к другому только в том случае, если на входах конкретного вентиля И оба сигнала будут равны 1.

Изображенные здесь вентили выполняют логическую операцию И. Они показаны символическими обозначениями, принятыми в электронике. Хотя у каждого вентиля И здесь изображено по два входа, на самом деле число входов может быть и большим. Однако, как у всех логических вентилей, выход у него только один. Вентиль И по определению выдает значение 1, т. е. логическое значение «истина», в том и только том случае, когда на оба его входа поступает 1, т. е. «истина». Три верхних вентиля дают на выходе 0, или «ложь», поскольку ни у одного из них на оба входа не поступает по 1. Лишь у нижнего вентиля на выходе появляется 1, т. е. «истина». Как и вентили И, вентили ИЛИ могут иметь больше двух входов, Но только один выход. Однако к входам этих вентилей «предъявляются менее строгие требования». Как здесь показано, на выходе вентиля ИЛИ 1, или «истина», получается и в том случае, когда по крайней мере на один из его входов поступает 1. Только в одном случае вентиль ИЛИ выдает двоичный 0, или логическое значение «ложь», - когда логическое значение «ложь» поступает на все его входы.

Эти треугольники с кружочком на конце - символические изображения вентиля НЕ, или инвертера. В отличие от вентилей И, ИЛИ вентиль НЕ имеет лишь один вход, значение которого он меняет на обратное, превращая 0 в 1, а 1 в 0. Вентили НЕ часто комбинируют с вентилями И и ИЛИ, в результате чего получаются вентили И-НЕ («и - не») и ИЛИ-НЕ («или - не»). Такие комбинированные схемы обрабатывают входные сигналы так же, как вентили И, ИЛИ, а затем инвертируют выходной сигнал.

Ост здесь.

Логическая Машина

- механическое, электромеханическое или электронно-вычислительное устройство, предназначенное для полуавтоматического или автоматического решения широкого круга математических и логических задач, для управления технологическими и производственными процессами, для оптимальных экономических расчетов, для обработки массивов информации, которые мозг человека не в состоянии охватить, для моделирования форм человеческого мышления. Попытки создать механические устройства для осуществления арифметических операций уходят в далекую древность. Первую логическую машину построил Раймунд Луллий (1235-1315). Его машина состояла из семи вращающихся вокруг одного центра кругов. На каждом из них были написаны слова, выражающие различные понятия, напр. "человек", "знание", "количество" и т. п., и логические операции, напр. "равенство", "противоречие" и т. п. Вращая круги, можно было получать разнообразные сочетания понятий. С помощью своей машины Луллий получал из заданных посылок силлогистические выводы. В первой половине XVII в. французский математик Б. Паскаль (1623-1662) сконструировал машину для выполнения арифметических операций. Идея машинизации процессов умозаключения была теоретически развита немецким философом и ученым Г. Лейбницем (1646-1716) в работе "Об искусстве комбинаторики". Первой подлинно Л. м. считается "демонстратор" Ч. Стенхопа (1753-1816), с помощью которого проверялись не только традиционные, но и т. наз. "числовые" силлогизмы. "Демонстратор" решал элементарные задачи традиционной логики. Научные основы для создания современных Л. м. были заложены благодаря развитию математической логики и кибернетики, а техническая возможность их создания была обеспечена прогрессом в области электроники и автоматики. В 1944 г. в США была построена автоматическая вычислительная машина "Марк-1", имевшая электромагнитное реле и перфоленту, на которой записывались числа и указывались операции с ними. В 1945 г. Дж. фон Нейман предложил помещать закодированную программу вычислений в запоминающее устройство машины, что значительно расширило диапазон ее возможностей. С середины 50-х годов начали создаваться информационно-логические машины, способные хранить значительные записи информации, выбирать из них необходимые данные и производить не только математическую обработку информации, но и логические операции. Л. м. последующих поколений способны осуществлять миллиарды операций в секунду, различать простые рисунки, самообучаться, понимать простые фразы на естественном языке и решать самые разнообразные задачи во многих областях науки, техники, управления и т. д. Принципиальная схема Л. м. включает следующие основные компоненты: 1. Входное устройство, преобразующее внешнюю информацию в последовательность электрических импульсов. 2. Выходное устройство, преобразующее электрические сигналы в последовательность воспринимаемых человеком знаков. 3. Запоминающее устройство, хранящее информацию и часто называемое просто "памятью" машины. Различают оперативную память, емкость которой сравнительно невелика, но отличается быстродействием, и долговременную, внешнюю память, с большим объемом, но меньшим быстродействием. 4. Арифметическое устройство, осуществляющее математические и логические действия. 5. Блок управления, обеспечивающий автоматическое выполнение программы, введенной в машину. Все более широкое использование Л. м. позволяет человеку решать все более сложные задачи, освобождает его от рутинных мыслительных операций и делает человеческий труд все более творческим.