
- •1. Скважинное и устьевое оборудование для фонтанной эксплуатации скважин. Типоразмеры, схемы, конструкционные материалы, применяемые для изготовления фонтанной арматуры.
- •Схемы оборудования нефтяных и газовых скважин
- •Фонтанная арматура. Назначение, условия работы, требования, классификация, принципиальные схемы, конструкции.
- •3.3.1 Фонтанная арматура
- •3.3.2 Назначение, условия работы, требования, классификация, принципиальные схемы, конструкции
- •2. Фланцевые соединения и запорные элементы фонтанной арматуры. Конструкция, типоразмеры, маркировка, материалы, методика расчета.
- •Нагрузка на шпильки от их предварительной затяжки:
- •4 .3 Расчет газлифтных клапанов
- •4. Установки электроцентробежного насоса. Назначение, область применения, основные конструктивные схемы и особенности конструкции. Методика подбора и расчета уэцн.
- •5. Конструкция уэцн, осевые и радиальные опоры, токовводы. Методика подбора и расчета уэцн.
- •Особенности работы погружных центробежных электронасосов в нефтяных скважинах
- •6. Установки электроприводных винтовых насосов. Конструкция, области применения. Методика подбора и расчета уэвн.
- •П огружные винтовые насосы
- •Методика подбора и расчета уэвн:
- •7. Установки электроприводных диафрагменных насосов. Конструкции, области применения. Методика подбора и расчета уэдн.
- •Установки с диафрагменными насосами
- •Подбор:
- •Расчет:
- •8. Оборудование для штанговой насосной эксплуатации. Конструктивные схемы, области применения, типоразмеры.
- •10. Подбор поверхностного и скважинного оборудования шсну.
- •11. Винтовые штанговые насосные установки. Общие сведения. Схемы, конструкции насосов и приводов. Области применения, типоразмеры, маркировка, материалы. Характеристика насоса.
- •12. Гидропоршневые насосные установки. Схемы и конструкции насосов. Назначение, области применения, типоразмеры. Характеристика гпну.
- •15. Преимущества и недостатки гидропоршневых насосных установок. Основные расчетные зависимости для подбора гидропоршневых насосных установок.
- •Скважинные гидропоршневые насосные установки
- •Структура расчетов по подбору гидропоршневых насосов
- •Расчет:
- •Конструкции скважинных струйных насосов
- •14. Конструкция газосепаратора уэцн. Типоразмеры, коэффициент сепарации. Методика подбора и расчета уэцн.
Конструкции скважинных струйных насосов
Струйные насосы являются разновидностью гидроприводных насосов, и они обладают всеми достоинствами этого вида оборудования,
Б
лагодаря
своим конструктивным особенностям
струйные аппараты отличаются высокой
надежностью и эффективностью, особенно
в осложненных условиях эксплуатации,
например при добыче пластовой жидкости
со значительным содержанием механических
примесей и коррозионно-активных веществ
из наклонно направленных скважин.
К преимуществам струйных насосов относят их малые габариты, большую пропускную способность и возможность стабильно отбирать пластовую жидкость с высоким содержанием свободного газа. Кроме того, простая конструкция установок, отсутствуют движущиеся детали, возможно исполнение струйного насоса в виде свободного, сбрасываемого агрегата.
В струйном насосе или инжекторе (рис. 8.3) поток откачиваемой жидкости перемещается от забоя скважины до устья скважины за счет получения энергии от потока рабочей жидкости, подаваемого поверхностным силовым насосом с устья скважины.
Нагнетание скважинной жидкости осуществляется благодаря явлению эжекции в рабочей камере, т.е. смешению скважинной жидкости с рабочим потоком жидкости, обладающим большой энергией, см. рис. 8.3.
Режим работы струйного насоса характеризуется следующими параметрами: рабочий напор Нр, затрачиваемый в насосе и равный разности напоров рабочего потока на входе в насос (сечение В—В) и на выходе из него (сечение С—С), полезный напор Нр, создаваемый насосом и равный разности напоров подаваемой жидкости за насосом (сечение С—С) и перед ним (сечение А—А); расход рабочей жидкости Q1; полезная подача Qo. КПД струйного насоса равен отношению полезной мощности к затраченной и может достигать величины КПД = 0,2...0,35.
Такое значение КПД струйных насосов обусловлено большими потерями энергии, сопровождающими рабочий процесс: в камере смешения (на вихреобразование и гидравлическое трение жидкости о стенки камеры); в элементах насоса, подводящих и отводящих жидкость (в рабочем и кольцевом сопле и диффузоре).
Струйный насос работает следующим образом. При истечении рабочей жидкости со скоростью V1 из сопла в затопленное пространство сразу за передним срезом сопла на поверхности струи возникает область смешения. Быстрые частицы проникают в окружающий медленный поток невозмущенной жидкости, подсасываемый через кольцевой проход в камеру со скоростью Vo и передают ей энергию. Этот процесс, основанный на интенсивном вихреобразовании, происходит в непрерывно утолщающемся по длине струйном пограничном слое. Вместе с тем внутренняя область рабочей струи, а именно ее ядро и внешняя область невозмущенной подсасываемой жидкости — постоянно уменьшаются и на расстоянии L от рабочего сопла потоки рабочей и откачиваемой жидкости уже полностью перемешаны. На дальнейшем участке камеры смешения происходит только выравнивание профиля скоростей потока жидкости. Чаще всего в струйных насосах применяют цилиндрические камеры смешения, технологические простые в изготовлении и обеспечивающие относительно высокий КПД.
Для преобразования достаточно высокой скорости потока в камере смешения в давление поток направляется в диффузор.
Чтобы удовлетворить различным требованиям условий работы насоса в скважинах (по подачам и напорам), необходимо подобрать сочетания площадей проходных сечений.
Основные фирмы-изготовители выпускают комплекты струйных насосов с набором рабочих сопел (насадок) различных размеров и несколькими (от 1 до 6) комплектами камер смешения (горловин) для каждой насадки.
Выбор соотношения размеров рабочего сопла и камеры смешения зависит от условий эксплуатации. Зарубежные фирмы наиболее часто используют струйные насосы с соотношением площадей сопла и горловины 0,235...0,400.