
- •1. Общие вопросы выполнения релейной защиты электроэнергетических систем
- •1.1. Назначение релейной защиты
- •1.2. Требования к релейной защите
- •1.3. Изображение схем релейной защиты на чертежах
- •1.4. Элементы защиты
- •1.5. Принципы выполнения устройств релейной защиты
- •1.6. Источники оперативного тока
- •2. Трансформаторы тока и схемы их соединений
- •2.1. Принцип действия
- •2.2. Параметры, влияющие на уменьшение намагничивающего тока
- •2.3. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •2.4. Типовые схемы соединений трансформаторов тока
- •2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду
- •2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду
- •2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •2.4.4. Включение реле на разность токов 2 – фаз (схема восьмерки)
- •4.2. Защита линий с помощью мтз с независимой выдержкой времени
- •4.2.1. Схемы защиты
- •4.2.1.1. Трехфазная схема защиты на постоянном оперативном токе
- •4.2.1.2. Двухфазные схемы защиты на постоянном оперативном токе
- •4.2.1.2.1. Двухрелейная схема
- •4.2.1.2.2. Одно-релейная схема
- •4.2.2. Выбор тока срабатывания защиты
- •4.2.3. Чувствительность защиты
- •4.2.4. Выдержка времени защиты
- •4.3. Мтз с пуском (блокировкой) от реле минимального напряжения
- •4.3.1. Схема защиты
- •4.3.2. Ток срабатывания токовых реле
- •4.3.3. Напряжение срабатывания реле минимального напряжения
- •4.3.4. Чувствительность реле напряжения
- •4.4.3. Схема защиты
- •4.4.4. Выдержки времени защит
- •4.5. Мтз на переменном оперативном токе
- •4.5.1. Схема с дешунтированием катушки отключения выключателей
- •4.5.1.1. Схема защиты с зависимой характеристикой
- •4.5.1.2. Схема защиты с независимой характеристикой
- •4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
- •4.5.3. Схема защиты с использованием энергии заряженного конденсатора
- •4.6. Поведение мтз при двойных замыканиях на землю
- •4.7. Область применения мтз
- •5. Токовые отсечки
- •5.1. Принцип действия
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.3.1. Ток срабатывания отсечки
- •5.3.2. Зона действия отсечки
- •5.3.3. Время действия отсечки
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •6. Измерительные трансформаторы напряжения
- •6.1. Принцип действия
- •6.2. Погрешности трансформаторов напряжения
- •6.3. Схемы соединений трансформаторов напряжения
- •6.3.1. Схема соединения трансформаторов напряжения в звезду
- •6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник
- •6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник
- •6.4. Контроль за исправностью цепей напряжения
- •7. Токовая направленная защита
- •7.1. Необходимость токовой направленной защиты
- •7.2. Индукционные реле направления мощности
- •7.2.1. Общие сведения
- •7.4. Схемы включения реле направления мощности
- •7.4.1. Требования к схемам включения
- •7.4.2. 90 И 30 схемы
- •7.4.3. Работа реле, включенных по 90 и 30 схемам
- •7.5. Блокировка максимальной направленной защиты при замыканиях на землю
- •7.6. Выбор уставок защиты
- •7.6.1. Ток срабатывания пусковых реле
- •7.6.2. Выдержка времени защиты
- •7.6.3. Мертвая зона
- •7.7. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •7.6.Дистанционная защита.
- •7.6.1.Общие сведения.
- •7.6.2.Выбор параметров защиты.
- •Первые ступени.
- •Вторые ступени.
- •7.8. Высокочастотные защиты.
- •7.8.1. Общие сведения.
- •7.8.2. Направленная защита с
- •7.8.3. Дифференциально-фазная защита.
- •7.9. Защита от замыканий на землю в сети
- •8. Защиты трансформаторов.
- •8.1.Общие сведения.
- •8.2.Защита трансформаторов, не имеющих
- •1. Использование защит линии.
- •2. Передача отключающего импульса.
- •3. Установка короткозамыкателя.
- •4. Автоматика отключения отделителя.
- •8.3.Дифференциальная защита.
- •8.3.1. Общие сведения.
- •8.3.2. Схемы и расчет диф.Защиты.
- •1. Расчет токов небаланса в схемах диф.Защиты.
- •2. Дифференциальная отсечка.
- •3. Диф.Защита с рнт-565.
- •4. Диф.Защита с торможением.
- •8.4. Токовая отсечка.
- •8.5. Газовая защита.
- •1. Поплавковые реле.
- •2. Лопастное реле.
- •3. Чашечные реле.
- •8.6. Защита от сверхтоков.
- •8.7. Защита от перегрузки.
- •9. Защиты шин.
- •9.1.Защита сборных шин, ошиновки.
- •1. Дифференциальная защита шин.
- •2. Неполная диф.Защита шин.
- •9.2.Защита шин 6-10кВ.
- •10.Защита двигателей.
- •10.1. Общее.
- •10.2. Защита от м.Ф.К.З.
- •10.3. Защита от 1ф.К.З.
- •10.4. Защита от перегрузки.
- •11. Защита синхронных компенсаторов.
- •12. Зашиты генераторов.
- •12.1. Виды повреждений и ненормальные режимы.
- •12.2. Продольная диф.Защита.
- •12.3. Продольная поперечная защита.
- •12.4. Защита от однофазных замыканий на землю.
- •12.5. Токовые защиты от внешних к.З. И перегрузки.
- •1. Мтз с блокировкой по напряжению.
- •2. Мтз от перегрузки.
- •3. Токовая защита обратной последовательности.
- •12.6. Защита от повышения напряжения.
- •12.7. Защита цепи возбуждения от замыканий на землю.
- •1. Защита от замыканий на землю в одной точке.
- •2. Защита от замыканий на землю в двух точках (устанавливается только на турбогенераторах).
- •12.8. Защита ротора от перегрузки.
- •12.9. Особенности защиты блоков генератор-трансформатор.
- •1.Продольная защита.
- •12.10. Токовые защиты от внешних к.З. И перегрузок.
- •12.11. Защита от замыканий на землю
- •12.12. Защита генераторов малой мощности.
- •13. Автоматическое повторное включение.
- •13.1 Общие сведения.
- •13.2. Классификация апв.
- •13.3. Требования к апв.
- •13.4. Апв однократного действия.
- •13.5. Ускорение действия релейной защиты при апв.
- •13.6. Выполнение апв на переменном оперативном токе.
- •14. Автоматическое включение резерва.
- •14.1. Общие сведения.
- •14.2. Требования к авр.
- •14.3. Принцип действия авр.
- •15. Уров.
- •Литература
4.5. Мтз на переменном оперативном токе
Схемы МТЗ с питанием оперативных цепей от переменного тока могут выполняться:
1) с питанием от трансформаторов тока – на принципе дешунтирования катушки отключения при срабатывании защиты;
2) с питанием от блока питания;
3) с питанием от предварительно заряженных конденсаторов.
4.5.1. Схема с дешунтированием катушки отключения выключателей
4.5.1.1. Схема защиты с зависимой характеристикой
На рис. 4.5.1 изображена схема для привода с двумя катушками отключения. Схема выполняется на реле РТ–85 или РТ–95, имеющими мощные переключающие контакты (до 150 А).
Рис. 4.5.1
Особенности схем с дешунтированием
1. Для их выполнения нужны реле, контакты которых обладают необходимой мощностью для переключения проходящего через них тока КЗ 100…200 А.
2. После срабатывания защиты нагрузка трансформаторов тока резко возрастает за счет подключения катушки отключения. В результате чего увеличивается погрешность трансформаторов тока и вторичный ток, проходящий по реле, уменьшается. Погрешность трансформаторов тока должна быть такой, чтобы вторичный ток был достаточен для удержания в сработанном состоянии реле и надежного действия катушки отключения выключателя.
4.5.1.2. Схема защиты с независимой характеристикой
Схема защиты представлена на рис. 4.5.2. На схемах: TLA, TLC – промежуточные трансформаторы реле времени; KT – обмотка электродвигателя реле времени; KL1.3, KL2.3 – контакты, шунтирующие контакт реле времени.
Рис. 4.5.2
Пояснения к схеме.
1. Во избежания отказа реле времени при двухфазном КЗ АС цепь обмотки TLC разрывается размыкающим контактом КА1.2. В противном случае, как показано на рис. 4.5.3, ток, протекающий через обмотку электродвигателя очень мал и реле не сработает.
Рис. 4.5.3
2. После включения катушек отключения выключателей YAT ток от трансформаторов тока уменьшается, реле КА и КТ могут разомкнуть свои контакты. Однако благодаря самоудерживающим контактам промежуточных реле KL1.3 и KL2.3 преждевременного возврата реле KL при этом не произойдет.
4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
Поскольку блоки питания (БП) выдают выпрямленное напряжение, схемы выполняются так же, как и схемы на постоянном токе.
Главный вопрос при выполнении защит на выпрямленном токе – способы подключения БП к трансформаторам тока и трансформаторам напряжения. Для защит от КЗ в качестве основных используют БП, подключаемые к трансформаторам тока. БП, подключаемые к трансформаторам напряжения, обеспечивают необходимую мощность при малых значениях тока.
Схемы включения токовых блоков должны выбираться из условия, чтобы на выходе блока имелось достаточное напряжение при всех возможных видах повреждения на защищаемом элементе.
1. В сети с изолированной нейтралью для защит, не рассчитанных на действие при КЗ за трансформатором с соединением обмоток Y/, применяется включение БП на разность токов Ia–IC (рис. 4.5.4).
Рис. 4.5.4
2. При необходимости действия защиты при КЗ за трансформаторами Y/ устанавливается второй БП.
Рис. 4.5.5
3. При соединении трансформаторов тока в двухфазную звезду БП включается в нулевой провод.
Рис. 4.5.6
В сетях с глухозаземленной нейтралью применяются аналогичные схемы.
БП,
подключаемый к трансформаторам
напряжения, включается на линейное
напряжение.
Рис. 4.5.7
БП могут устанавливаться на каждом присоединении или использоваться как групповые.
Падение напряжения на выходах БП не должно быть меньше 0,8...0,9 Uном. Выполнение этого условия проверяется расчетами.
В токовых БП принимаются специальные меры для стабилизации выходного напряжения и повышения отдаваемой мощности.
Схема комбинированного блока питания
была представлена ранее на рис. 1.6.2.
Емкость конденсатора С подбирается
так, чтобы в сочетании с и
ндуктивностью
обмотки L обеспечивались
условия феррорезонанса, наступающие
при некотором токе
,
когда XL=XC.
5 А.
Рис. 4.5.8