
- •1. Общие вопросы выполнения релейной защиты электроэнергетических систем
- •1.1. Назначение релейной защиты
- •1.2. Требования к релейной защите
- •1.3. Изображение схем релейной защиты на чертежах
- •1.4. Элементы защиты
- •1.5. Принципы выполнения устройств релейной защиты
- •1.6. Источники оперативного тока
- •2. Трансформаторы тока и схемы их соединений
- •2.1. Принцип действия
- •2.2. Параметры, влияющие на уменьшение намагничивающего тока
- •2.3. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •2.4. Типовые схемы соединений трансформаторов тока
- •2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду
- •2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду
- •2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •2.4.4. Включение реле на разность токов 2 – фаз (схема восьмерки)
- •4.2. Защита линий с помощью мтз с независимой выдержкой времени
- •4.2.1. Схемы защиты
- •4.2.1.1. Трехфазная схема защиты на постоянном оперативном токе
- •4.2.1.2. Двухфазные схемы защиты на постоянном оперативном токе
- •4.2.1.2.1. Двухрелейная схема
- •4.2.1.2.2. Одно-релейная схема
- •4.2.2. Выбор тока срабатывания защиты
- •4.2.3. Чувствительность защиты
- •4.2.4. Выдержка времени защиты
- •4.3. Мтз с пуском (блокировкой) от реле минимального напряжения
- •4.3.1. Схема защиты
- •4.3.2. Ток срабатывания токовых реле
- •4.3.3. Напряжение срабатывания реле минимального напряжения
- •4.3.4. Чувствительность реле напряжения
- •4.4.3. Схема защиты
- •4.4.4. Выдержки времени защит
- •4.5. Мтз на переменном оперативном токе
- •4.5.1. Схема с дешунтированием катушки отключения выключателей
- •4.5.1.1. Схема защиты с зависимой характеристикой
- •4.5.1.2. Схема защиты с независимой характеристикой
- •4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
- •4.5.3. Схема защиты с использованием энергии заряженного конденсатора
- •4.6. Поведение мтз при двойных замыканиях на землю
- •4.7. Область применения мтз
- •5. Токовые отсечки
- •5.1. Принцип действия
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.3.1. Ток срабатывания отсечки
- •5.3.2. Зона действия отсечки
- •5.3.3. Время действия отсечки
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •6. Измерительные трансформаторы напряжения
- •6.1. Принцип действия
- •6.2. Погрешности трансформаторов напряжения
- •6.3. Схемы соединений трансформаторов напряжения
- •6.3.1. Схема соединения трансформаторов напряжения в звезду
- •6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник
- •6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник
- •6.4. Контроль за исправностью цепей напряжения
- •7. Токовая направленная защита
- •7.1. Необходимость токовой направленной защиты
- •7.2. Индукционные реле направления мощности
- •7.2.1. Общие сведения
- •7.4. Схемы включения реле направления мощности
- •7.4.1. Требования к схемам включения
- •7.4.2. 90 И 30 схемы
- •7.4.3. Работа реле, включенных по 90 и 30 схемам
- •7.5. Блокировка максимальной направленной защиты при замыканиях на землю
- •7.6. Выбор уставок защиты
- •7.6.1. Ток срабатывания пусковых реле
- •7.6.2. Выдержка времени защиты
- •7.6.3. Мертвая зона
- •7.7. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •7.6.Дистанционная защита.
- •7.6.1.Общие сведения.
- •7.6.2.Выбор параметров защиты.
- •Первые ступени.
- •Вторые ступени.
- •7.8. Высокочастотные защиты.
- •7.8.1. Общие сведения.
- •7.8.2. Направленная защита с
- •7.8.3. Дифференциально-фазная защита.
- •7.9. Защита от замыканий на землю в сети
- •8. Защиты трансформаторов.
- •8.1.Общие сведения.
- •8.2.Защита трансформаторов, не имеющих
- •1. Использование защит линии.
- •2. Передача отключающего импульса.
- •3. Установка короткозамыкателя.
- •4. Автоматика отключения отделителя.
- •8.3.Дифференциальная защита.
- •8.3.1. Общие сведения.
- •8.3.2. Схемы и расчет диф.Защиты.
- •1. Расчет токов небаланса в схемах диф.Защиты.
- •2. Дифференциальная отсечка.
- •3. Диф.Защита с рнт-565.
- •4. Диф.Защита с торможением.
- •8.4. Токовая отсечка.
- •8.5. Газовая защита.
- •1. Поплавковые реле.
- •2. Лопастное реле.
- •3. Чашечные реле.
- •8.6. Защита от сверхтоков.
- •8.7. Защита от перегрузки.
- •9. Защиты шин.
- •9.1.Защита сборных шин, ошиновки.
- •1. Дифференциальная защита шин.
- •2. Неполная диф.Защита шин.
- •9.2.Защита шин 6-10кВ.
- •10.Защита двигателей.
- •10.1. Общее.
- •10.2. Защита от м.Ф.К.З.
- •10.3. Защита от 1ф.К.З.
- •10.4. Защита от перегрузки.
- •11. Защита синхронных компенсаторов.
- •12. Зашиты генераторов.
- •12.1. Виды повреждений и ненормальные режимы.
- •12.2. Продольная диф.Защита.
- •12.3. Продольная поперечная защита.
- •12.4. Защита от однофазных замыканий на землю.
- •12.5. Токовые защиты от внешних к.З. И перегрузки.
- •1. Мтз с блокировкой по напряжению.
- •2. Мтз от перегрузки.
- •3. Токовая защита обратной последовательности.
- •12.6. Защита от повышения напряжения.
- •12.7. Защита цепи возбуждения от замыканий на землю.
- •1. Защита от замыканий на землю в одной точке.
- •2. Защита от замыканий на землю в двух точках (устанавливается только на турбогенераторах).
- •12.8. Защита ротора от перегрузки.
- •12.9. Особенности защиты блоков генератор-трансформатор.
- •1.Продольная защита.
- •12.10. Токовые защиты от внешних к.З. И перегрузок.
- •12.11. Защита от замыканий на землю
- •12.12. Защита генераторов малой мощности.
- •13. Автоматическое повторное включение.
- •13.1 Общие сведения.
- •13.2. Классификация апв.
- •13.3. Требования к апв.
- •13.4. Апв однократного действия.
- •13.5. Ускорение действия релейной защиты при апв.
- •13.6. Выполнение апв на переменном оперативном токе.
- •14. Автоматическое включение резерва.
- •14.1. Общие сведения.
- •14.2. Требования к авр.
- •14.3. Принцип действия авр.
- •15. Уров.
- •Литература
7.8.3. Дифференциально-фазная защита.
ДФЗ основана на сравнении фаз токов по концам ЛЭП, считая положительным направлением тока от шин в линию. Следовательно при внешних к.з. в точке К1 токи I1 и I2 по концам линии имеют различные знаки (сдвинуты относительно друг друга на 1800).
В случае к.з. на линии токи имеют одинаковые знаки и их принимают совпадающими по фазе, если пренебречь сдвигом углов ЭДС Е1 и Е2 и различием Z1 и Z2. Таким образом сравнивая фазы токов по концам линии можно установить место к.з. Сравнение фаз происходит косвенным путем посредством сравнения токов высокой частоты.
Защита состоит:
приемопередатчик (ГВЧ, ПВЧ);
реле отключения РО;
два пусковых органа П1 и П2 ( П1 пускает ГВЧ, П2 контролирует цепь отключения);
орган манипуляции (Тм).
Ток высокой частоты проходит по каналу, образованному линией и землей. Выход токов высокой частоты за пределы линии ограничиваются заградителями. Подключение ВЧ постов осуществляется через конденсатор связи С. ГВЧ управляется непосредственно током промышленной частоты при помощи Тм.
При положительной полуволне Тм работает, ГВЧ посылая в линию ток высокой частоты, приемник запирается. ПВЧ выполнен так, что при наличии тока высокой частоты, поступающий в его входной контур, выходной ток, питающий РО равен нулю, а при отсутствии ВЧ сигнала появляется выходной ток. Таким образом ГВЧ работает в течении положительных полупериодов, а ПВЧ – при отсутствии ВЧ сигналов.
При внешних к.з. ток высокой частоты протекает по линии непрерывно и питает приемники на обеих сторонах линии. В результате выходной ток в цепи РО отсутствует.
При к.з. в зоне ГВЧ работают одновременно. ВЧ ток имеет прерывистый характер с t=0,01с(Т/2). В выходной цепи приемника протекает прерывистый ток, который сглаживается специальным устройством и подается в реле РО.
Сдвиг фаз между токами, проходящими по обоим концам линии, определяется по характеру ВЧ сигналов, на которые при помощи приемников реагируют реле РО.
ДФЗ не реагирует на нагрузку и качания, так как в этих режимах токи на обеих концах имеют разные знаки.
Основные органы ДФЗ:
пусковой орган П1 и П2, пускающий ГВЧ и разрешающий действовать защите при к.з;
орган манипуляции, управляющего (Тм) ГВЧ в зависимости от знака сравниваемых токов;
органа сравнения фаз токов, действующего на отключение при совпадении фаз токов, проходящих по концам линии.
Особенности ДФЗ:
Одновременный пуск ВЧ передатчиков на обеих концах защищаемой линии при внешних к.з. При удаленных внешних к.з. когда пусковое реле, пускающие ВЧ передатчик работает на пределе своей чувствительности возможна работа пускового органа только с одной стороны линии. Защита может подействовать ложно. Для исключения этого пусковой орган состоит из двух комплектов: чувствительного (ГВЧ) и грубого (в 1,5-2раза), управляющего цепью отключения.
Нарушение непрерывности ВЧ сигнала при и внешних к.з. и качаниях может возникнуть вследствие неодновременного действия реле, пускающего передатчиками. Поэтому пуск ГВЧ должен осуществляться несколько раньше, чем срабатывает РО, а останов их – позже возврата пусковых реле, управляющих цепью отключения.
Выполнение ДФЗ, сравнивающих токи в каждой фазе, - сложно и дорого. Вместо токов фаз сравнивают их симметричные составляющие, получаемые от фильтров преобразующих 3-х фазную систему в однофазную. Это выполняют комбинированные фильтры, на выходе которых
. Подобные фильтры работают при всех видах к.з.
Искажение фаз сравниваемых токов из-за погрешности ТТ фазы. При этом фазы вторичных токов искажаются, возникает сдвиг фаз между токами на обеих концах линии. При больших искажениях возможны неправильные действия. Для исключения этого выбирают параметры так, чтобы ДФЗ блокировалась в условиях внешнего к.з. (ψ=180-β) и работает при к.з. в зоне при ψ>0. Предельное значение угла β – это угол блокировки. При к.з. в зоне возможно расхождение фаз токов вследствие различия фаз между ЭДС Е1 и Е2.