
- •1. Общие вопросы выполнения релейной защиты электроэнергетических систем
- •1.1. Назначение релейной защиты
- •1.2. Требования к релейной защите
- •1.3. Изображение схем релейной защиты на чертежах
- •1.4. Элементы защиты
- •1.5. Принципы выполнения устройств релейной защиты
- •1.6. Источники оперативного тока
- •2. Трансформаторы тока и схемы их соединений
- •2.1. Принцип действия
- •2.2. Параметры, влияющие на уменьшение намагничивающего тока
- •2.3. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •2.4. Типовые схемы соединений трансформаторов тока
- •2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду
- •2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду
- •2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •2.4.4. Включение реле на разность токов 2 – фаз (схема восьмерки)
- •4.2. Защита линий с помощью мтз с независимой выдержкой времени
- •4.2.1. Схемы защиты
- •4.2.1.1. Трехфазная схема защиты на постоянном оперативном токе
- •4.2.1.2. Двухфазные схемы защиты на постоянном оперативном токе
- •4.2.1.2.1. Двухрелейная схема
- •4.2.1.2.2. Одно-релейная схема
- •4.2.2. Выбор тока срабатывания защиты
- •4.2.3. Чувствительность защиты
- •4.2.4. Выдержка времени защиты
- •4.3. Мтз с пуском (блокировкой) от реле минимального напряжения
- •4.3.1. Схема защиты
- •4.3.2. Ток срабатывания токовых реле
- •4.3.3. Напряжение срабатывания реле минимального напряжения
- •4.3.4. Чувствительность реле напряжения
- •4.4.3. Схема защиты
- •4.4.4. Выдержки времени защит
- •4.5. Мтз на переменном оперативном токе
- •4.5.1. Схема с дешунтированием катушки отключения выключателей
- •4.5.1.1. Схема защиты с зависимой характеристикой
- •4.5.1.2. Схема защиты с независимой характеристикой
- •4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
- •4.5.3. Схема защиты с использованием энергии заряженного конденсатора
- •4.6. Поведение мтз при двойных замыканиях на землю
- •4.7. Область применения мтз
- •5. Токовые отсечки
- •5.1. Принцип действия
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.3.1. Ток срабатывания отсечки
- •5.3.2. Зона действия отсечки
- •5.3.3. Время действия отсечки
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •6. Измерительные трансформаторы напряжения
- •6.1. Принцип действия
- •6.2. Погрешности трансформаторов напряжения
- •6.3. Схемы соединений трансформаторов напряжения
- •6.3.1. Схема соединения трансформаторов напряжения в звезду
- •6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник
- •6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник
- •6.4. Контроль за исправностью цепей напряжения
- •7. Токовая направленная защита
- •7.1. Необходимость токовой направленной защиты
- •7.2. Индукционные реле направления мощности
- •7.2.1. Общие сведения
- •7.4. Схемы включения реле направления мощности
- •7.4.1. Требования к схемам включения
- •7.4.2. 90 И 30 схемы
- •7.4.3. Работа реле, включенных по 90 и 30 схемам
- •7.5. Блокировка максимальной направленной защиты при замыканиях на землю
- •7.6. Выбор уставок защиты
- •7.6.1. Ток срабатывания пусковых реле
- •7.6.2. Выдержка времени защиты
- •7.6.3. Мертвая зона
- •7.7. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •7.6.Дистанционная защита.
- •7.6.1.Общие сведения.
- •7.6.2.Выбор параметров защиты.
- •Первые ступени.
- •Вторые ступени.
- •7.8. Высокочастотные защиты.
- •7.8.1. Общие сведения.
- •7.8.2. Направленная защита с
- •7.8.3. Дифференциально-фазная защита.
- •7.9. Защита от замыканий на землю в сети
- •8. Защиты трансформаторов.
- •8.1.Общие сведения.
- •8.2.Защита трансформаторов, не имеющих
- •1. Использование защит линии.
- •2. Передача отключающего импульса.
- •3. Установка короткозамыкателя.
- •4. Автоматика отключения отделителя.
- •8.3.Дифференциальная защита.
- •8.3.1. Общие сведения.
- •8.3.2. Схемы и расчет диф.Защиты.
- •1. Расчет токов небаланса в схемах диф.Защиты.
- •2. Дифференциальная отсечка.
- •3. Диф.Защита с рнт-565.
- •4. Диф.Защита с торможением.
- •8.4. Токовая отсечка.
- •8.5. Газовая защита.
- •1. Поплавковые реле.
- •2. Лопастное реле.
- •3. Чашечные реле.
- •8.6. Защита от сверхтоков.
- •8.7. Защита от перегрузки.
- •9. Защиты шин.
- •9.1.Защита сборных шин, ошиновки.
- •1. Дифференциальная защита шин.
- •2. Неполная диф.Защита шин.
- •9.2.Защита шин 6-10кВ.
- •10.Защита двигателей.
- •10.1. Общее.
- •10.2. Защита от м.Ф.К.З.
- •10.3. Защита от 1ф.К.З.
- •10.4. Защита от перегрузки.
- •11. Защита синхронных компенсаторов.
- •12. Зашиты генераторов.
- •12.1. Виды повреждений и ненормальные режимы.
- •12.2. Продольная диф.Защита.
- •12.3. Продольная поперечная защита.
- •12.4. Защита от однофазных замыканий на землю.
- •12.5. Токовые защиты от внешних к.З. И перегрузки.
- •1. Мтз с блокировкой по напряжению.
- •2. Мтз от перегрузки.
- •3. Токовая защита обратной последовательности.
- •12.6. Защита от повышения напряжения.
- •12.7. Защита цепи возбуждения от замыканий на землю.
- •1. Защита от замыканий на землю в одной точке.
- •2. Защита от замыканий на землю в двух точках (устанавливается только на турбогенераторах).
- •12.8. Защита ротора от перегрузки.
- •12.9. Особенности защиты блоков генератор-трансформатор.
- •1.Продольная защита.
- •12.10. Токовые защиты от внешних к.З. И перегрузок.
- •12.11. Защита от замыканий на землю
- •12.12. Защита генераторов малой мощности.
- •13. Автоматическое повторное включение.
- •13.1 Общие сведения.
- •13.2. Классификация апв.
- •13.3. Требования к апв.
- •13.4. Апв однократного действия.
- •13.5. Ускорение действия релейной защиты при апв.
- •13.6. Выполнение апв на переменном оперативном токе.
- •14. Автоматическое включение резерва.
- •14.1. Общие сведения.
- •14.2. Требования к авр.
- •14.3. Принцип действия авр.
- •15. Уров.
- •Литература
7.4. Схемы включения реле направления мощности
7.4.1. Требования к схемам включения
Реле KW включается, как правило, на фазный ток и фазное или междуфазное напряжение. Сочетание фаз тока и напряжения, питающего реле, называемое схемой включения, должно быть таким, чтобы реле правильно определяло знак мощности КЗ при всех возможных случаях и видах повреждений и чтобы к нему подводилась наибольшая мощность SР:
SP= UPIPsin(–Р), (7.10)
где – угол внутреннего сдвига реле.
Мощность SP может быть недостаточна для действия реле, при КЗ близких к месту установки реле снижается напряжение UP или при неблагоприятном значении угла Р – sin(–Р) 0. Отсюда вытекают следующие требования к схемам включения
1. Реле должно включаться на такое напряжение, которое при близких КЗ не снижается до нуля.
2. UP и IP, подводимые к реле, должны подбираться так, чтобы угол сдвига между ними Р в условиях КЗ не достигал значений, при которых SP на зажимах реле 0.
7.4.2. 90 И 30 схемы
В современных схемах ТНЗ применяется включение реле направления мощности по так называемым 90 и иногда 30 схемам.
На рис. 7.4.1 приведена принципиальная схема максимальной направленной защиты с двумя пусковыми органами: тока и минимального напряжения и однофазными реле направления мощности, включенными по 90 схеме.
Рис. 7.4.1
Рис. 7.4.1 (продолжение)
На рис. 7.4.2 представлена принципиальная схема максимальной направленной защиты с токовым пусковым органом и трехфазным реле направления мощности, включенным по 30 схеме.
Рис. 7.4.2
Таблица 7.1
|
90 схема |
30 схема |
||
Реле |
IP |
UP |
IP |
UP |
1 |
IA |
UBC |
IA |
UAC |
2 |
IB |
UCA |
IB |
UBA |
3 |
IC |
UAB |
IC |
UCB |
На рис. 7.4.3 и 7.4.4 представлены векторные диаграммы для 90 и 30 схемам соответственно.
Рис. 7.4.3
Рис. 7.4.4
Названия схем условны – их именуют по
углам Р
между UP
и IP
в симметричном трехфазном режиме при
условии, что угол сдвига фаз между
фазными током и напряжением равен нулю:
(чисто активная нагрузка).
7.4.3. Работа реле, включенных по 90 и 30 схемам
Рассмотрим работу 90 схемы. (Анализ работы 30 должен быть выполнен студентами самостоятельно)
М.Ч.реле= – 30,
=90+М.Ч=90–30=60,
МЭ=kUPIPcos(P+30),
IP=IA, UP=UBC.
Трехфазное КЗ на линии
Рис. 7.4.5
Ток IA отстает от UА на k – определяется активным и реактивным сопротивлением линии от шин до точки КЗ и влиянием активного сопротивления дуги, (рис. 7.4.5):
и
– два предельных положения векторов
тока;
– ток КЗ через дугу в начале линии;
– ток при КЗ за чисто реактивным сопротивлением.
Угол P= – (90 – k) – его предельные значения колеблются от 0 до 90.
Диаграмма токов и напряжений на зажимах реле показана на рис. 7.4.6.
Рис. 7.4.6
Величина электромагнитного момента максимальна: МЭ.макс при P= – 30 (k = 60). При P =0 величина электромагнитного момента составляет 0,86 от МЭ.макс, при P = –90 величина момента составляет 0,5 от МЭ.макс.
Из анализа векторной диаграммы можно сделать вывод, что работа реле при трехфазном КЗ в зоне и вне зоны действия будет правильной и величина электромагнитного момента МЭ вполне достаточной для действия реле.
С точки зрения величины UP, схема обеспечивает максимально возможное значение напряжения на зажимах реле, поскольку питается линейным напряжением.
Исследования показали, что 90 схема оказывается наиболее выгодной для реле направления мощности с углом от 30 до 60, оптимальные условия имеют место при =45.
Выводы по схеме
1. Знак момента реле при всех видах КЗ в зоне положителен, а вне зоны – отрицателен.
2. Величина электромагнитного момента МЭ в диапазоне возможных изменений угла P остается значительной и достаточной для действия реле.
3. Напряжение UP при симметричных КЗ имеет максимально возможное значение, обеспечивающие минимальную величину мертвой зоны (при близких КЗ UP=0 – реле не срабатывает).
Недостаток 90 схемы
Возможность неправильной работы однофазных реле направления мощности KW при КЗ за силовым трансформатором с соединением обмоток Y/. (Чисто теоретическая возможность: КЗ должно произойти через дугу с большим сопротивлением, на практике подобные происшествия не зафиксированы.) Трехфазные реле в подобных случаях должны действовать правильно.
90 схема считается лучшей и рекомендуется как типовая для реле направления мощности KW смешанного типа.
30 схема
Используется, в основном, для реле косинусного типа. Реле, включенные по такой схеме, ведут себя правильно при всех видах КЗ. Недостаток аналогичен реле, включенным по 90 схеме: – возможность отказа при КЗ за трансформатором Y/.