Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСЕ БИЛЕТЫ НА ГОС.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
42.52 Mб
Скачать

Вопрос 4.

Иерархия таксономических подразделений. Бинарная номенклатура.

- Царство

- Тип

- Класс

- Отряд

- Семейство

- Род

- Вид- это группа популяций, неограниченно скрещивающихся между собой в естественных условиях и репродуктивно изолированных(невозможно скрещиваться) от других групп популяций.

Бинарную номенклатуру ввёл Карл Лене.

5 царств: растения, животные, грибы, одноклеточные, археаты (индивид. организмы)

Отличие животных и растений – способ питания. Грибы отличаются от растений тем, что используют простые минеральные соединения не путём фотосинтеза.

Царство Animalia(животные)

Подцарство Protozoa(простейшие)

Тип Sarcodina(саркодовые)

Отряд FORAMINIFERIDA

Подотряд Textulariina

Надсемейство Haplophragmiacea

Семейство Ammosphaeroidinidae

Подсемейство Recurvoidinae

Род Recurvoides

Recurvoides(род) singularis(вид) Lutova 1981 (автор, год)

Открытая номенклатура – неточное определение таксона.

Recurvoides sp.- вид.

Recurvoides ex. gr. – из рода

Recurvoides cf. singularis

Сейсморазведка – это совокупность методов исследования геологического строения земной коры (к которой приурочены месторождения П.И.) основанных на изучении распределения в ней искусственно возбужденных упругих волн. Упругая волна распространяется на глубину от точки возбуждения, отражается от глубинной границы, преломляется и возвращается к земной поверхности, здесь она фиксируется приемной аппаратурой.

Задачи и методы сейсморазведки. Изучая время распространения и характер колебания волн определяют глубину и форму залегания преломляющих или отражающих границ. Сейсмический метод позволяет определять слоистую структуры среды, углы наклона пластов, получать информацию об анизотропии скоростей, о трещиноватости, газо- и нефтенасыщености. Сейсморазведка широко используется при поиске нефтеных и газовых месторождений, м-ий углей, бокситов, каменной соли приуроченных к пологозалегающим структурам, и для решения рудных задач, а также в региональных геологических исследованиях.

В методах сейсморазведки информацию о строении среды извлекают из сейсмограмм и временных разрезов. Сейсмограмма это запись регулярных колебаний повторяющихся с небольшим смещением во времени, от трассы к трассе и с небольшим искажением формы записи. На сейсмограмме изображено несколько групп sin-идальных колебаний, который идентифицируются с упругими волнами прошедшими в разное время от источника колебаний. Монтаж их представляет собой временной разрез (с помощью него определяют геологические границы).

Модели среды: реальные геологические среды отличаются упругими свойствами. Из-за многообразие геологических сред для упрощения расчетов вводят модели сред (сеймсоразведка1, стр.5 рис). Важной геологической единицей является слой. Модели слоистых сред описывают структуры осадочных бассейнов. Примером модели с непрерывным изменением скорости является интрузивные массивы, в которых физические и упругие свойства распределены неравномерно. Обобщением первых двух классов является модель слоисто-неоднородной среды, в таких моделях имеются границы на которых скорости меняются скачком, а внутри толстых слоев являются непрерывной функцией координат. Реальные среды, особенно осадочные являются пористыми. Для которых вводится понятие коэффициента пористости, который определяется отношением порового пространства ко всему объему породы. Скорость и поглощения упругих волн определяется физ. св-вами пород и мелкими неоднородностями данной среды. Среды бывают сплошные, это означает, что в самом малом применяемом в рассмотрение объеме можно пренебречь молекулярным строением и дискретностью структуры.

Также среды бывают: изотропные (скорость не зависит от направления), анизотропные (зависит), однородные (скорость не меняется от точки к точки) и неоднородная (изменяется от точки к точки).

Предположение об упругом характере среды является физической основой сейсморазведки. Следовательно м.б. рассмотрены напряженное состояние и деформации. Источник упругих волн это объекты воздействующие на среду, которые меняют форму и объем среды. Меры изменения формы и объема это относительные деформации. Мера воздействия на среду это напряжение.

Классификация методов сейсморазведки. Её можно проводить по типам применяемых волн. Основными методами является метод отраженных волн (МОВ), и метод преломленных (головных) волн (МПВ). В них используются волны разных типов поляризаций: продольные, поперечные и обменные. В отдельных методах выделяют различные модификации в зависимости от сложностей сейсмогеологических условий и решаемых геологических задач. На основе цифровой регистрации и соответствующей обработки разработаны более эффективные методы общей глубинной точки отражения (ОГТ).

Сейсмические наблюдения в зависимости от места их выполнения подразделяют на: - наземную сейсморазведку; - речную и озерную сейсморазведку; - морскую сейсморазведку; - скважинную сейсморазведку; - подземную (шахтную) сейсморазведку. В зависимости от характера решаемых геологических задач сейсм-ку разделяют на: структурную и неструктурную, а в зависимости от вида полевых наблюдений – на профильную и площадную.

В зависимости от решаемых геологоразведочных задач различают следующие виды сейсморазведочных работ:

- глубинные сейсмические зондирования (ГСЗ). ГСЗ применяют для изучения поверхности кристаллического фундамента и нижележащих слоев земной коры, их соотношения со структурными особенностями осадочн. чехла, а также для изучения крупных тектонич-их элементов земной коры. Основные границы раздела имеют следующие значения граничных скоростей головных волн: поверхность кристалл. фунд-та (Vr =6 км/с); граница Конрода, м.у. гранитным и базальтовым слоями (Vr =7 км/с); подошва земной коры – граница Мохо (Vr =8 км/с).

- региональные сейсморазведочные работы. Их задачи – изучение наиболее крупных особенностей геологического строения, определение глубины и рельефа кристаллического фунд-та, выявление в осадочном чехле сводов, валов, впадин и др. Выполняются по длинным, до 100-ен км, профилям, пересекающим крупные геологические регионы. Исследования этим методом комплектуют МОВ, МПВ, а также обменных проходящих волн.

- поисковые сейсморазведочные работы. Их задача – обнаружение особенностей геологич. разреза, благоприятного для образования м-ий полез. иск. Так, при поисках нефтегазоносных м-ий интерес будут представлять выявление антиклинальных складок, соляных копалов, зон стратиграфического и литологического несогласия. Основным при разведке явл. МОВ в его различных модификациях.

- детальные сейсморазведочные работы (ДСР). Их задача подготовка перспективных площадей, выявленных при поисково-съемочных работах, под глубокое разведочное бурение. В последние время популярной является методика называемая прогнозированием геологического разреза (ПГР). Она включает поиск неструктурных ловушек нефти и газа, изучение вещественного состава разреза, и прогноз наличия в нем углеводородного сырья. При изучении нефтепромысловых свойств пород разреза изучают динамические и кинематические характеристики сейсм.волн (V продольных и поперечных волн, интенсивности, упругие константы горных пород). ДСР проводят с использованием ОГТ, РНП, скважинных наблюдений, продольных, поперечных, обменных и проходящих волн.

- инженерная сейсморазведка. Она решает задачи связанные с проектирование и строительством инженерных сооружений. Часто применяется комплексирование с другими геоф.методами и бурением. Небольшие глубины исследования делают целесообразным применением МПВ, широко используются прямые и поверхностные волны. Решаются следующие геологические задачи: определении глубины залегания и форма рельефа крепких коренных пород, определение положения уровня грунтовых вод, выявление зон повышенной опасности и др.

Методы и методика сейсморазведки: Основные методы это МОВ и МПВ, которые позволяют квартировать имеющиеся на глубине границы раздела. Рассмотрим 2-ух слойную среду в ней упругая волна может пройти от источника возбуждения к приемнику 3 путями (сейсморазведка 1, стр.34, рис 12),:

- прямая волна распространяется по прямой со скоростью V1;

- отраженная волна подходит к границе раздела под некоторым углом и отражаясь возвращается на поверхность к приемнику со скоростью V1;

- преломленная волна подходит к поверхности под критическим углом со скоростью V1. Преломившись, она распространяется как головная со скро-тью V2 и возвращается к поверхности со скоростью V1.

Кривая зависимости времени пробега (прихода) волны от расстояния ее пробега – это годограф (сейсморазведка 1, стр.34, рис. 13). По ним вычисляют глубину залегания подстилающего слоя. Из рис. 13 видно, что первые вступления волн, зафиксироыванные приемником, будут принадлежать прямой Х < Хп или головной волне Х > Хп. На расстоянии Хп эти волны пересекаются, и головная волна выходит на первые вступления, ближе Хкр головная волна не существует, и на этом расстоянии времена пробега головной и отраженной волн совпадают, т.к. они проходят по одному пути. Но отраженные волны никогда не наблюдаются в первых вступлениях, они явл. малоамплитудными, а преломленные всегда регестрируются на больших расстояния до 1000 км – эти особенности годографов определяют методику работ на отраженных и преломленных волнах. => в МПВ расстояние от источника до первого приемника д.б. большим, чтобы фиксировать преломленную волну в первых вступлениях. В МОВ надо выявлять фазы, которые никогда не выходят в первые вступления и имеют малую амплитуду => в МОВ регистрация ведется на малых расстояниях.

Билет №18.