- •Вопрос 3.
- •Вопрос 4.
- •Вопрос 2. Строение и основные структурные элементы древних и молодых платформ(на примере Сибирской платформы и Западно-Сибирской плиты)
- •Структурные элементы поверхности фундамента и осадочного чехла платформ:
- •Вопрос 3.Пористость, проницаемость и фазовая проницаемость коллекторов.Нефть,газ и вода в поровом пространстве коллектора.
- •Вопрос 4.Геологические задачи разведочной геофизики и роль разных методов в их решении.
- •1.Минералогия магматических и метасоматических пород. Магматическая кристаллизация
- •Контактово-метасоматические процессы
- •Фенитизация
- •2.Первичные формы залегания осадочных горных пород и морфологические типы слоистости.
- •4.Магнитные и электрические свойства горных пород: определяющие факторы и закономерности.
- •Плотность горных пород
- •Плотность химических элементов и минералов
- •Плотность магматических пород
- •Плотность метаморфических пород
- •Зависимость плотности пород от р-т-условий; плотностные модели коры и мантии Земли
- •Упругие своиства горных пород
- •Упругие свойства простых веществ и минералов
- •Скорости в магматических и метаморфических породах
- •Зависимость скоростей сейсмических волн в интрузивных породах от давления
- •Вопрос 1. Интрузивные горные породы нормального ряда.
- •Вопрос 2. Учение о геосинклиналях и тектоника литосферных плит: сущность, обоснование, сравнение основных положений.
- •Основные положения тектоники литосферных плит
- •Вопрос 3. Геотектоническое, структурное, стратиграфическое распределение месторождений нефти и газа.
- •Вопрос 4. Корреляция между плотностью и скоростями сейсмических волн. Объясните природу общей закономерности и отклонений от нее.
- •1. Петрохимические серии магматических пород (толеитовая, щелочно-оливин-базальтовая, щелочная и известково-щелочная-андезитовая).
- •2. Строение складчато-покровных областей. Основные структурные элементы (на примере складчатых поясов обрамления Сибирской платформы).
- •3. Океанографический профиль: геоморфологические элементы, биономические зоны.
- •4. Нормальное гравитационное поле Земли, его изменение с широтой и высотой вблизи земной поверхности.
- •Вопрос 1. Фации метаморфизма. Основные принципы их выделения
- •Вопрос 2. Первичные формы залегания магматических горных пород, геологические методы диагностики морфологии и взаимоотношений эффузивных и интрузивных тел.
- •Вопрос 3. Важнейшие группы ископаемых животных и растений, их значение для стратиграфии и палеогеографических реконструкций.
- •Вопрос 3. Аномалии силы тяжести, их виды, корреляция их значений с рельефом.
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •2. Особенности строения, магматизма и метаморфизма раннедокембрийских щитов древних платформ (на примере Алданского и Анабарского щитов).
- •1) Алданский щит
- •2) Анабарский щит
- •3) Стратиграфический кодекс: содержание, структура, назначение
- •Методы количественной интерпретации гравитационных аномалий
- •Вопрос 1
- •Вопрос 2.
- •Вопрос 3. (На счёт этого вопроса очень сильно сомневаюсь! Не понятно что нужно!!!)
- •Вопрос 4.
- •Базальты
- •Методы определения абсолютных движений плит
- •Вопрос №4. Методы сопротивлений; общие принципы, измерительные установки, различие методов вэз и эп.
- •Методы палеогеографических исследований.
- •2) Механизмы складкообразования и геологические обстановки формирования складок и складчатых областей.
- •Динамические условия образования складок
- •Геологические условия образования складок
- •Складки волочения
- •3) Условия формирования россыпных месторождений. Главные промышленно-важные минералы россыпей.
- •4) Физические основы сейсморазведки: типы волн, отражение и преломление, вид годографов.
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •Вопрос 1.
- •Вопрос 3.
- •Вопрос 4.
- •Вопрос 2.
- •Образование сбросов.
- •Взбросы.
- •Происхождение взбросов.
- •Происхождение грабенов и горстов.
- •Происхождение сдвигов.
- •Раздвиги
- •Надвиги
- •Тектонические трещины
- •Вопрос 1. Главные петрохимические типы метаморфических пород.
- •Вопрос 2. Пассивные окраины континентов:строение и состав осадочных формаций.
- •Вопрос 3. Геологические условия образования грейзеновых и скарновых месторождений вольфрама, главные рудные минералы.
- •Вопрос 4. Абиотические факторы.Большая тройка абиотических факторов на суше и в море.Классификация организмов по их отношению к абиотическим факторам.
- •Солнечное излучение
- •Палеомагнитные исследования и их значение для тектоники
- •Технологические свойства и марки углей. Основные факторы катагенеза углей и нефтей
- •Гсз: основы методики, задачи и основные результаты
- •Морфологические типы кристаллов и их информативное значение
- •Активные окраины континентов: типы, cтроение, зональность вулканизма
- •Торф и сапропель. Паралическое и лимническое торфонакопление
- •Ядерная геофизика: физические понятия и основные факты
- •Ядерно-геофизические методы при поиске и разведке месторождений нефти и газа
- •Вопрос 1
- •2. Зарождение на поверхности жидкости.
- •3. Зарождение на готовых зародышах.
- •4. Зарождение на кристаллах ранней генерации.
- •Вопрос 2
- •Вопрос 3 Конструкция стратиграфической схемы. Номеклатура и иерархия страт подразделений, категории подразделений
- •Основные типы геотермобарометров
- •1.Геотермометры, основанные на обменных реакциях - термометры, основанные на распределении между фазами Mg и Fe при опред. P и t.
- •2. Геотермометры, основанные на реакции с ростом расходования фаз. (net-transfer)
- •3. Сольвусная геотермометрия.
- •Амфиболовый геобарометр
- •Амфиболовый геобарометр
- •Влияние минерального состава породы на соотношение AlVi/ AlIv в амфиболе с изменением p.
- •Классификация залежей по значениям рабочих дебитов
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Первичный расплав из лерцолитов при высоком содержании воды,
- •3. Дифференциация высокоглинозёмистой базальтовой магмы
- •4. Взаимодействие (смешение) базальтов и кислых расплавов, за счет плавления корового материала;
- •Методы ядерной геофизики (из инета):
2) Механизмы складкообразования и геологические обстановки формирования складок и складчатых областей.
Опыт, накопленный при геологических исследованиях, свидетельствует о многообразии процессов складчатости, которые не являются следствием какой-либо одной причины, а отражают различные стороны развития земной коры и протекают с различной интенсивностью как во времени, так и в пространстве, в полной зависимости от физических свойств горных пород и условий окружающей среды. Ниже рассмотрены две генетические классификации складок. Первая из них основана на различиях в динамических условиях пластических деформаций; вторая — отражает геологическую обстановку, в которой развиваются складки.
Динамические условия образования складок
Изгиб слоев в складки представляет собой упруго-вязкую деформацию. Если деформация не сопровождается пластическим смещением вещества, происходит разрушение породы и образование разрывов. В породах с низкой вязкостью (соли, гипсы и др.) при воздействии достаточной нагрузки и различиях в давлении окружающей среды изгиб сопровождается течением вещества. Последнее может возникнуть и в любых других породах в результате снижения вязкости по мере возрастания температуры.
Различия в динамической обстановке позволяют разделить складки на две крупные группы: складки изгиба и складки течения.
Складки изгиба развиваются при продольном сжатии, поперечном изгибе и воздействии пары сил.
Продольный изгиб вызывается силами, ориентированными обычно горизонтально и действующими вдоль слоистости (рис. 121, а). При однородном составе слоистых толщ скольжение рассредоточивается по всей массе пород: если слои имеют различные свойства, оно концентрируется в наиболее мягких пластичных слоях (например, в прослоях аргиллитов, заключенных среди песчаников). Малопластичные слои при этом нередко разрываются и перемещаются в виде отдельных блоков. При скольжении вещество перераспределяется в пределах одной складки. Оно перемещается к изгибам с большим радиусом кривизны от изгибов с относительно меньшим радиусом. Подобные складки легко воспроизвести, сминая стопку листов бумаги.
Скольжение происходит на фоне общего перемещения вещества в направлении, перпендикулярном к действию сжимающих усилий, в участки с относительно меньшим давлением. Таким образом, при образовании складок продольного изгиба происходит общее сжатие пород в направлении, нормальном к осевым поверхностям складок, и удлинение вдоль осевой поверхности. В прямых складках ось максимального сокращения (с) располагается горизонтально и перпендикулярно к простиранию складок, ось максимального удлинения (а) будет вертикальной, а средняя ось деформации (Ь) вытянется по направлению складки (рис. 122).
Ширина и высота складок продольного изгиба возрастает с увеличением мощности слоев и вязкости пород. В маломощных слоях складки обычно невелики по размерам.
По отношению к сжимающим усилиям оси складок продольного изгиба ориентируются в поперечном направлении. Однако в вертикальных сечениях они могут иметь различное положение.
При однообразном составе и двухстороннем сжатии образуются симметричные складки, нарушения концентричности или подо бия в которых могут быть вызваны различиями в физических свойствах отдельных слоев (рис. 123). При резких литологических различиях в слоях могут возникнуть более сложные складки с разрывами хрупких пород, сводовыми отслаиваниями и другими нарушениями.
Рис. 121. Различные типы складок.
О, б — продольного изгиба; в, г — поперечного изгиба; б —течения; / — направления действующих сил; 2 — направления перемещения пород; 3 — участки растяжения; 4 — участки сжатия
При одностороннем действии сжимающих усилий возникают наклонные или опрокинутые складки. Если в нижних частях сжимаемой толщи преобладают более хрупкие слои, а в верхних — мягкие, то наклон складок будет соответствовать направлению действующих сил. При обратном соотношении пород наклон складок будет направлен в сторону, противоположную действующим силам (см. рис. 121, б)
При поперечном равномерном изгибе силовое воздействие ориентировано перпендикулярно к плоскости. Образованию складок на начальных стадиях и в этом случае способствует скольжение слоев, но направленное иначе, чем в складках продольного изгиба (см. рис. 121, г). Вещество станет перемещаться в стороны от участков с максимальным радиусом изгиба в большей степени, чем на участках с меньшим радиусом. Таким образом, при поперечном равномерном изгибе повсеместно будет наблюдаться неодинаковое по интенсивности растяжение пород.
При значительном поперечном изгибе в породах перпендикулярно к слоистости начинают возникать трещины, а затем и крупные разрывы. Нередко центральные части таких складок отрываются от своих крыльев и опускаются вниз под воздействием силы тяжести.
Если силы, вызывающие образование складок поперечного изгиба, сосредоточены вдоль определенных линий, возникают особенно сложные деформации, повторяющие в общих чертах те линейные направления, от которых передаются усилия (см. рис. 121, в). Участки с интенсивным растяжением в таких складках могут локализоваться в виде узких полос, создавая флексуры.
В складках поперечного изгиба ось минимального сокращения пород обычно расположена перпендикулярно к слоистости, а ось максимального удлинения — вдоль слоев. Если кривизна складки неодинакова, то и сокращение и удлинение на ее отдельных участках будут различны. В вытянутых овальных складках растяжение и удлинение максимальны в направлении, поперечном к простиранию складки, а минимальные — вдоль ее простирания. В округлых куполах сжатие в вертикальном направлении сопровождается растяжением по всем радиусам (ось максимального удлинения совпадает со средней осью эллипсоида деформации).
Складки, образующиеся при действии пары сил (сдвиговых деформациях), имеют ряд отличительных черт. Очень важно установить, в какой плоскости действует пара сил: в горизонтальной или вертикальной.
В первом случае оси складок обычно располагаются кулисообразно под углом 40—50° к активной паре сил, занимая все пространство в интервале между действующими силами.
Если действие сил сосредоточено по разные стороны от линии разрыва, оси складок при приближении к нарушению дугообразно изгибаются в направлении смещения крыльев разрыва.
Во втором случае при расположении пары сил в вертикальной плоскости, т. е. друг над другом, и их действии в горизонтальном или почти горизонтальном направлении образуются наклонные или опрокинутые складки, часто осложненные разрывами, оси которых перпендикулярны к действующим силам. При активном действии верхнего вектора наклон и опрокидывание складок и действие вектора направлены в одну и ту же сторону. Если активным является нижний вектор, наклон и опрокидывание складок происходят в сторону, противоположную действию вектора.
Складки течения возникают при вязко-пластическом состоянии вещества и очень большом значении фактора времени. Для направленного течения необходима достаточная разность давлений в окружающей среде, способная вызвать перемещение из участков с высоким давлением к участкам, в которых давление относительно ниже.
В верхних слоях земной коры, в условиях относительно невысоких температур и давления, течение свойственно только горным породам, обладающим малой вязкостью: солям, гипсам, углям, известнякам, глинам, насыщенным водой. При достаточно высоких температурах и давлениях высокую пластичность приобретают даже самые крепкие породы, такие как кварциты, аплиты, гнейсы .и др. При этом одновременно может происходить и перекристаллизация вещества.
При однородности физических свойств отдельных слоев течение вещества происходит рассредоточение в направлении слоистости; при разнородных слоях оно сосредоточивается в наиболее пластичных в данных условиях слоях. Несмотря на значительные перемещения вещества при образовании складок течения, заметить поверхности скольжения почти никогда не удается из-за происходящей одновременно с течением перекристаллизации пород.
Складки течения обладают особенно неправильными формами с многочисленными раздувами, утонениями и пережимами слоев (см. рис. 121, д). Наиболее обычны условия, при которых возникают складки течения, связанные с общим горизонтальным сжатием пород. При этом происходит относительно свободный рост антиклиналей вверх, а породы с малой вязкостью перемещаются из крыльев на участки с меньшим давлением в ядра складок, где они образуют структуры течения, нередко дисгармоничные к общему строению основной складки.
Складки течения, развитые в метаморфических толщах, отличаются небольшими размерами и образуются под воздействием стресса в условиях повышения температуры до сотен градусов и длительного воздействия нагрузок.
В более резкой форме, хотя и на ограниченных по площади районах, складки течения появляются в породах с малой вязкостью и пониженной плотностью (соли, гипсы).
Будучи перекрыты отложениями с большой плотностью, они начинают перемещаться вверх, протыкая последние и образуя при этом сложные сочетания складок (диапировые складки, см. ниже).
Из сказанного выше следует, что в каждом из типов складок обязательно присутствуют явления, свойственные и двум другим типам. Иногда образование двух или даже трех типов складок может происходить одновременно. Например, в пластичном ядре диапировой складки могут возникнуть складки продольного изгиба и складки течения, а вмещающие породы в это время будут испытывать поперечный изгиб, выгибаясь вверх. Тем не менее каждому из видов складок присущ определенный преобладающий характер перемещения вещества, что вместе с отмеченными выше морфологическими особенностями позволяет легко различать отдельные разновидности складок в естественных условиях.
