Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСЕ БИЛЕТЫ НА ГОС.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
42.52 Mб
Скачать

Плотность горных пород

Определение и способы измерения плотности

Плотность является важнейшим параметром состояния вещества.

В естественном залегании пород их плотность (σ) есть отношение полной массы (m) к полному объему (V) тела (выделенной части среды), которые включают твердую матрицу породы, жидкую и газовую фазы в поровом пространстве:

σ = m/V= (mт+ mж + mг)/(Vт+ Vж + Vг)

где индексы, относятся к массе и объему твердой, жидкой и

газообразной фаз соответственно. Массой газов можно пренебречь.

Vг+Vж =Vп - объем порового пространства, его отношение к

полному объему называется коэффициентом пористости: Кп=Vп/V

Минеральная плотность (твердой фазы) σ = mт/Vт, плотность сухой породы

σс= mт/V= σм (1 — Кп), тогда σ = σс + σж Кп

где σж — плотность жидкости в поровом пространстве. Общая пористость осадочных пород довольно велика. Вблизи поверхности она достигает 0,2—0,4, а на глубинах 5—б км под давлением вышележащих пород уменьшается до уровня пористости минералов, 10-3-10-2. Магматические и метаморфические породы имеют большие значения пористости в корах выветривания, до 0,2, а у неизмененных пород она редко превышает первые проценты. В гравиразведке такие величины не учитывают. для плотности не имеют большого значения различия общей и эффективной пористости, степень связности порового пространства.

В нормативной для учебной литературы системе СИ плотность выражается в килограммах на кубический метр (кг/м3), а значения плотности геологических объектов вынуждают записывать их с множителем 10.

Приводимые ниже значения плотности минералов м горных пород относятся к обычным условиям: нормальному атмосферному давлению и температуре 20 °С.

Значения плотности флюидов в поровом пространстве горных пород таковы: наиболее распространены минерализованные воды с плотностью 1,0—1,2 г/см3 плотность нефти изменяется при разном составе фракций от 0,5 до 1 ,0 г/см. Плотность воздуха в условиях атмосферного давления равна 0,0012 г/см’, природного газа в зависимости от состава углеводородов 0,0006—0,002 г/см3, но под давлением, например, 70 МПа (на глубине 2 км) плотность газов (и воздуха) достигает 0,2 г/см3

Плотность химических элементов и минералов

Плотность простых веществ (химических элементов) зависит от их атомной массы, радиуса атома, а также температуры и давления. При постоянных Р-Т-условиях плотность имеет вполне конкретные значения, соответствующие изотопному составу.

Почти вся масса атома сосредоточена в ядре, на долю электронов приходится 1/2000 полной массы атома. Масса ядра определяется

чассовым числом — суммарным количеством протонов и нейтронов:

Mя= (1,672р + 1,675n)10-27 кг. Большая плотность ядра, 1014 г/см3, объясняется тем, что радиус ядра на 5 порядков меньше радиуса атома (10-15 м и 10-10 м) и объем ядра составляет 10-15 объема атома.

В периодической системе элементов имеет место закономерное изменение атомных радиусов, атомной массы, плотности и упругих свойств. Атомная масса растет с атомным номером, атомные радиусы в каждом периоде обнаруживают уменьшение к середине периода, и соответственно этому уменьшению растут плотность и скорости распространения упругих волн.

Элементы, входящие в соединения с противоположными по знаку зарядами ионов (С, N, О, Р, S, Сl, F, Si), имеют на порядок отличающиеся ионные радиусы. Они в 2—5 раз меньше атомных радиусов для положительно заряженных ионов (анионов) и в 2—3 раза больше для отрицательных (катионов). Это означает, что плотность соединений больше средней плотности элементов.

Плотность минералов определяется а) средней атомной массой составляющих их элементов, б) плотностью упаковки атомов в кристаллической решетке, которая зависит от строения электронных оболочек, преобладающего типа связей между атомами. Минералы с ионной и ковалентной связями, а их большинство, в том числе все породообразующие минералы, имеют плотность в относительно нешироком диапазоне значений от 2,2 до 4,5 г/см3.

В чистом виде влияние атомной массы и плотности упаковки кристаллической решетки на плотность минералов видно на примерах изоморфных рядов и полиморфных модификаций минералов соответственно. Наиболее важный пример изменения плотности при изовалентном изоморфизме — оливины: замещение Мg+2 на Fе+2 приводит к увеличению плотности от 3,2 г/см3 форстерита М2SiО4. Это явление (изоморфизм) имеет место при близости атомных радиусов, параметры решетки в изоморфных рядах почти не меняются. Изменения плотности минералов в таких рядах определяются в основном атомной массой.

Влияние кристаллической структуры на плотность минералов группы силикатов видно при сравнении значений плотности минералов с различной организацией ансамблей тетраэдров Si02. Увеличение плотности идет в направлении от низкоплотных каркасных силикатов (полевых шпатов) к слоистым (серпентин), далее — ленточным (роговая обманка), цепочечным (пироксены), а наиболее плотными являются островные силикаты (оливин, гранаты).

Глубокий метаморфизм основных пород (габбро) -в условиях высоких давлений в нижней литосфере приводит к образованию плотноупакованных структур эклогитов — ассоциации клинопироксенов