
- •Введение
- •1. Упругие волны
- •1.1. Волновые процессы Продольные и поперечные волны
- •1.2. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •Учитывая (1.3), уравнению (1.2) можно придать вид
- •Предположим, что при волновом процессе фаза постоянна, т.Е.
- •Продифференцировав выражение (1.5) и сократив на , получим
- •1.3. Интерференция волн.
- •1.4. Стоячие волны
- •В точках, где
- •2. Электромагнитные волны
- •2.1. Экспериментальное получение электромагнитных волн
- •2.2. Дифференциальное уравнение электромагнитной волны
- •2.3. Энергия электромагнитных волн
- •3 Интерференция света
- •3.1. Развитие представлений о природе света
- •3.2. Когерентность и монохроматичность световых волн
- •3.3.Условия интерференции света
- •Если оптическая разность хода равна целому числу волн в вакууме
- •3.4. Методы наблюдения интерференции света
- •3.5. Расчет интерференционной картины от двух источников
- •3.6. Интерференция света в тонких пленках
- •3.7. Применение интерференции света
- •4. Дифракция света
- •4.1. Принцип Гюйгенса-Френеля
- •4.2. Метод зон Френеля. Прямолинейное распространение света
- •4.3.Дифракция Фраунгофера на одной щели
- •4.4. Дифракция Фраунгофера на дифракционной решетке
- •5.2. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •5.3. Поляризационные призмы и поляроиды
- •5.4. Искусственная оптическая анизотропия
- •5.5. Вращение плоскости поляризации
- •6. Квантовая природа излучения
- •6.1. Тепловое излучение и его характеристики
- •6.2. Закон Кирхгофа
- •Закон Стефана-Больцмана и смещение Вина
- •6.4. Формула Рэлея-Джинса и Планка
- •Планк вывел для универсальной функции Кирхгофа формулу
- •6.5. Оптическая пирометрия и тепловые источники света
- •6.6. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •6.7. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •6.8. Применение фотоэффекта
- •6.9 Масса и импульс фотона.
- •6.10. Диэлектрическое единство корпускулярных и волновых свойств электромагнитного излучения
- •7. Теория атома водорода по бору
- •Модели атома Томсона и Резерфорда
- •Линейчатый спектр атома водорода
- •Постулаты Бора
- •7.4. Спектр атома водорода по Бору
- •8. Элементы квантовой физики
- •Корпускулярно-волновой дуализм свойств вещества
- •8.2. Соотношение неопределенностей
- •Волновая функция и её статистический смысл
- •Величина
- •8.4. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •Спин электрона. Спиновое число
- •Согласно общим выводам квантовой механики, спин квантуется по закону
- •Принцип Паули. Распределение электронов в атоме по состояниям
- •10. Элементы физики твердого тела
- •Понятие о зонной теории твердых тел
- •10.2. Металлы, диэлектрики и полупроводники по зонной теории
- •10.4. Примесная проводимость полупроводников
- •Контакт электронного и дырочного полупроводников
- •10.6. Полупроводниковые диоды и триоды
- •11. Элементы физики атомного ядра
- •11.1. Размер, состав и заряд атомного ядра. Массовое и зарядовое число
- •11.2. Дефект массы и энергия связи ядра
- •11.3. Ядерные силы. Модели ядра
- •11.4. Радиоактивное излучение и его виды
- •Закон радиоактивного распада. Правила смещения
- •11.6. Элементарные частицы и типы взаимодействий
- •11.7. Частицы и античастицы
- •11.8. Классификация элементарных частиц. Кварки
2.2. Дифференциальное уравнение электромагнитной волны
Одним из важнейших следствий уравнений Максвелла является существование электромагнитных волн. Из уравнений Максвелла следует, что векторы напряженностей В и Н переменного электромагнитного поля удовлетворяют волновому уравнению типа
,
(2.1)
где =2/x2+2/y2+2/z2 - оператор Лапласа, V - фазовая скорость.
(2.2)
Всякая функция, удовлетворяющая уравнениям (2.1.) и (2.2.), описывает некоторую волну. Следовательно, электромагнитные поля действительно могут существовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением
,
(2.3)
где
;
0
и 0
- соответственно электрическая и
магнитная постоянные;
и
- соответственно
электрическая и магнитная проницаемости
среды. В вакууме (при =1
и =1)
скорость распространения электромагнитных
волн совпадает со скоростью с.
Так как >1,
то скорость распространения электромагнитных
волн в веществе всегда меньше, чем в
вакууме.
При вычислении скорости распространения электромагнитного поля по формуле (2.3) получается результат, достаточно хорошо совпадающий с экспериментальными данными, если учитывать зависимость и от частоты. Совпадение же размерного коэффициента в (2.3) со скоростью распространения света в вакууме указывает на глубокую связь между электромагнитными явлениями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электромагнитные волны.
Рис. 6
Следствием теории Максвелла является поперечность электромагнитных волн: векторы Е и Н напряженностей электрического и магнитного полей волны взаимно перпендикулярны (на рис.6 показана моментальная <<фотография>> плоской электромагнитной волны) и лежат в плоскости, перпендикулярной вектору v скорости распространения
волны, причем векторы Е, Н и v образуют правовинтовую систему. Из уравнений Максвелла следует также, что в электромагнитной волне векторы Е и Н всегда колеблются в одинаковых фазах (см. рис.6), причем мгновенные значения Е и Н в любой точке связаны соотношением
.
(2.4)
Следовательно, Е и Н одновременно достигают максимума, одновременно обращаются в нуль и т.д.
2.3. Энергия электромагнитных волн
Возможность обнаружения электромагнитных волн указывает на то, что они переносят энергию. Объемная плотность энергии электромагнитной волны складывается из объемных плотностей Эл и м электрического и магнитного полей:
=эл+ м=0Е22 +0Н2/2.
Исходя из выражения (2.4), получим: плотность энергии электрического и магнитного полей в каждый момент времени одинакова, т.е. эл=м. Поэтому
=2эл=0Е2=
ЕН.
Умножив плотность энергии на скорость V распространения волны в среде (см. 2.3), получим модуль плотности потока энергии:
S=V=EН.
Так как векторы Е и Н взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора [Е, Н] совпадает с направлением переноса энергии, а модуль этого вектора равен Е Н. Вектор плотности потока электромагнитной энергии называется вектором Умова - Пойнтинга:
S=[E Н].
Вектор S направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.