
- •Введение
- •1. Упругие волны
- •1.1. Волновые процессы Продольные и поперечные волны
- •1.2. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •Учитывая (1.3), уравнению (1.2) можно придать вид
- •Предположим, что при волновом процессе фаза постоянна, т.Е.
- •Продифференцировав выражение (1.5) и сократив на , получим
- •1.3. Интерференция волн.
- •1.4. Стоячие волны
- •В точках, где
- •2. Электромагнитные волны
- •2.1. Экспериментальное получение электромагнитных волн
- •2.2. Дифференциальное уравнение электромагнитной волны
- •2.3. Энергия электромагнитных волн
- •3 Интерференция света
- •3.1. Развитие представлений о природе света
- •3.2. Когерентность и монохроматичность световых волн
- •3.3.Условия интерференции света
- •Если оптическая разность хода равна целому числу волн в вакууме
- •3.4. Методы наблюдения интерференции света
- •3.5. Расчет интерференционной картины от двух источников
- •3.6. Интерференция света в тонких пленках
- •3.7. Применение интерференции света
- •4. Дифракция света
- •4.1. Принцип Гюйгенса-Френеля
- •4.2. Метод зон Френеля. Прямолинейное распространение света
- •4.3.Дифракция Фраунгофера на одной щели
- •4.4. Дифракция Фраунгофера на дифракционной решетке
- •5.2. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •5.3. Поляризационные призмы и поляроиды
- •5.4. Искусственная оптическая анизотропия
- •5.5. Вращение плоскости поляризации
- •6. Квантовая природа излучения
- •6.1. Тепловое излучение и его характеристики
- •6.2. Закон Кирхгофа
- •Закон Стефана-Больцмана и смещение Вина
- •6.4. Формула Рэлея-Джинса и Планка
- •Планк вывел для универсальной функции Кирхгофа формулу
- •6.5. Оптическая пирометрия и тепловые источники света
- •6.6. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •6.7. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •6.8. Применение фотоэффекта
- •6.9 Масса и импульс фотона.
- •6.10. Диэлектрическое единство корпускулярных и волновых свойств электромагнитного излучения
- •7. Теория атома водорода по бору
- •Модели атома Томсона и Резерфорда
- •Линейчатый спектр атома водорода
- •Постулаты Бора
- •7.4. Спектр атома водорода по Бору
- •8. Элементы квантовой физики
- •Корпускулярно-волновой дуализм свойств вещества
- •8.2. Соотношение неопределенностей
- •Волновая функция и её статистический смысл
- •Величина
- •8.4. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •Спин электрона. Спиновое число
- •Согласно общим выводам квантовой механики, спин квантуется по закону
- •Принцип Паули. Распределение электронов в атоме по состояниям
- •10. Элементы физики твердого тела
- •Понятие о зонной теории твердых тел
- •10.2. Металлы, диэлектрики и полупроводники по зонной теории
- •10.4. Примесная проводимость полупроводников
- •Контакт электронного и дырочного полупроводников
- •10.6. Полупроводниковые диоды и триоды
- •11. Элементы физики атомного ядра
- •11.1. Размер, состав и заряд атомного ядра. Массовое и зарядовое число
- •11.2. Дефект массы и энергия связи ядра
- •11.3. Ядерные силы. Модели ядра
- •11.4. Радиоактивное излучение и его виды
- •Закон радиоактивного распада. Правила смещения
- •11.6. Элементарные частицы и типы взаимодействий
- •11.7. Частицы и античастицы
- •11.8. Классификация элементарных частиц. Кварки
Спин электрона. Спиновое число
В 1922 г. О. Штерн и В. Герлах, проводя прямые измерения магнитных моментов, обнаружили, что узкий пучок атомов водорода, заведомо находящихся в s – состоянии, в неоднородном магнитном поле расщепляется на два пучка.
В этом состоянии момент импульса электрона равен нулю. Магнитный момент атома, связанный с орбитальным движением электрона, пропорционален механическому моменту. Поэтому он равен нулю, и магнитное поле не должно оказывать влияния на движение атомов водорода в основном состоянии, т.е. расщепления быть не должно. Однако в дальнейшем при применении спектральных приборов с большой разрешающей способностью было доказано, что спектральные линии атома водорода обнаруживают тонкую структуру (являются дублетами) даже в отсутствие магнитного поля.
Для объяснения тонкой структуры спектральных линий, а также ряда других явлений в атомной физике американские ученые Д. Уленбек и С. Гаудмист предположили, что электрон обладает собственным неуничтожимым моментом импульса, не связанным движением электрона в пространстве, - спином.
Спин электрона (и всех других микрочастиц) - квантовая величина, у нее нет классического аналога; это внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.
Если электрону приписывается собственный механический момент импульса (спин) LS, то ему соответствует собственный магнитный момент PMS.
Согласно общим выводам квантовой механики, спин квантуется по закону
,
где s - спиновое квантовое число.
По аналогии с орбитальным моментом импульса проекция SLz может принимать 2s + 1 = 2 , откуда s = 1/2. Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением
где
mS-
магнитное
спиновое квантовое число;
оно может иметь только два значения:
Таким образом, опытные данные привели к необходимости характеризовать электроны (и микрочастицы вообще) добавочной внутренней степенью свободы. Поэтому для полного описания состояния электрона в атоме необходимо наряду с главным, орбитальным и магнитным квантовыми числами, задавать еще магнитное спиновое квантовое число.
Принцип Паули. Распределение электронов в атоме по состояниям
Состояние электрона в атоме однозначно и определяется набором четырех квантовых чисел:
главного n (n = 1, 2, 3,...);
орбитального ( = 0, .1, 2,.., n-1);
магнитного
(
= -l…,
-1, 0, +1,…, l),
магнитного спинового mS (mS=+ 1/2, -1/2).
Распределение электронов в атоме подчиняется принципу Паули, который может быть использован в его простейшей формулировке: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел n, , и mS , т.е.
Z(n, , mS, ) = 0 или 1,
где Z(n, , mS, ) - число электронов, находящихся в квантовом состоянии, описываемом набором четырех квантовых чисел: n, , и mS. Таким образом, принцип Паули утверждает, что два электрона, связанные в одном и том же атоме, различаются значениями, по крайней мере, одного квантового числа.
Согласно
формуле
,
данному n
соответствует n2
различных
состояний, отличающихся значениями
и
.
Квантовое число mS
может принимать лишь два значения (
).
Поэтому максимальное число электронов,
находящихся в состояниях, определяемых
данным квантовым числом, равно
.
Совокупность электронов в многоэлектронном атоме, имеющих одно и то же главное квантовое число n, называют электронной оболочкой. В каждой из оболочек электроны распределяются по подоболочкам, соответствующим данному . Поскольку орбитальное квантовое число принимает значения от 0 до n-1, число подоболочек равно порядковому номеру n - оболочки.
Количество электронов в подоболочке определяется магнитным и магнитным спиновым квантовыми числами. Максимальное число электронов в подоболочке с данным 1 равно 2(21 + 1). Обозначения оболочек, а также распределение электронов по оболочкам и подоболочкам представлены в таблице.
Главное квантовое число |
1 |
2 |
3 |
4 |
5 |
Символы оболочки |
К |
L |
M |
N |
O |
Максимальное число электронов в оболочке |
2 |
8 |
18 |
32 |
50 |
Орбитальное квантовое число |
0 |
0 1 |
0 1 2 |
0 1 2 3 |
0 1 2 3 4 |
Символы под- Оболочки |
1s |
2s 2p |
3s 3p 3d |
4s 4p 4d 4f |
5s 5p 5d 5f 5g |
Максимальное число электронов в подоболочке |
2 |
2 6 |
2 6 10 |
2 6 10 14 |
2 6 10 14 18 |
Принцип Паули, лежащий в основе систематики заполнения электронных состоянии в атомах, позволяет объяснить периодическую систему Менделеева, фундаментальный закон природы, являющийся основой современной химии, атомной и ядерной физики.