
- •Введение
- •1. Упругие волны
- •1.1. Волновые процессы Продольные и поперечные волны
- •1.2. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •Учитывая (1.3), уравнению (1.2) можно придать вид
- •Предположим, что при волновом процессе фаза постоянна, т.Е.
- •Продифференцировав выражение (1.5) и сократив на , получим
- •1.3. Интерференция волн.
- •1.4. Стоячие волны
- •В точках, где
- •2. Электромагнитные волны
- •2.1. Экспериментальное получение электромагнитных волн
- •2.2. Дифференциальное уравнение электромагнитной волны
- •2.3. Энергия электромагнитных волн
- •3 Интерференция света
- •3.1. Развитие представлений о природе света
- •3.2. Когерентность и монохроматичность световых волн
- •3.3.Условия интерференции света
- •Если оптическая разность хода равна целому числу волн в вакууме
- •3.4. Методы наблюдения интерференции света
- •3.5. Расчет интерференционной картины от двух источников
- •3.6. Интерференция света в тонких пленках
- •3.7. Применение интерференции света
- •4. Дифракция света
- •4.1. Принцип Гюйгенса-Френеля
- •4.2. Метод зон Френеля. Прямолинейное распространение света
- •4.3.Дифракция Фраунгофера на одной щели
- •4.4. Дифракция Фраунгофера на дифракционной решетке
- •5.2. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •5.3. Поляризационные призмы и поляроиды
- •5.4. Искусственная оптическая анизотропия
- •5.5. Вращение плоскости поляризации
- •6. Квантовая природа излучения
- •6.1. Тепловое излучение и его характеристики
- •6.2. Закон Кирхгофа
- •Закон Стефана-Больцмана и смещение Вина
- •6.4. Формула Рэлея-Джинса и Планка
- •Планк вывел для универсальной функции Кирхгофа формулу
- •6.5. Оптическая пирометрия и тепловые источники света
- •6.6. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •6.7. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •6.8. Применение фотоэффекта
- •6.9 Масса и импульс фотона.
- •6.10. Диэлектрическое единство корпускулярных и волновых свойств электромагнитного излучения
- •7. Теория атома водорода по бору
- •Модели атома Томсона и Резерфорда
- •Линейчатый спектр атома водорода
- •Постулаты Бора
- •7.4. Спектр атома водорода по Бору
- •8. Элементы квантовой физики
- •Корпускулярно-волновой дуализм свойств вещества
- •8.2. Соотношение неопределенностей
- •Волновая функция и её статистический смысл
- •Величина
- •8.4. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •Спин электрона. Спиновое число
- •Согласно общим выводам квантовой механики, спин квантуется по закону
- •Принцип Паули. Распределение электронов в атоме по состояниям
- •10. Элементы физики твердого тела
- •Понятие о зонной теории твердых тел
- •10.2. Металлы, диэлектрики и полупроводники по зонной теории
- •10.4. Примесная проводимость полупроводников
- •Контакт электронного и дырочного полупроводников
- •10.6. Полупроводниковые диоды и триоды
- •11. Элементы физики атомного ядра
- •11.1. Размер, состав и заряд атомного ядра. Массовое и зарядовое число
- •11.2. Дефект массы и энергия связи ядра
- •11.3. Ядерные силы. Модели ядра
- •11.4. Радиоактивное излучение и его виды
- •Закон радиоактивного распада. Правила смещения
- •11.6. Элементарные частицы и типы взаимодействий
- •11.7. Частицы и античастицы
- •11.8. Классификация элементарных частиц. Кварки
6.4. Формула Рэлея-Джинса и Планка
Из законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции r,т Кирхгофа не дал желаемых результатов. Следующая строгая попытка теоретического вывода зависимости r,т принадлежит английским ученым Д. Рэлею и Д. Джинсу, которые применили к тепловому излучению методы статистической физики, воспользовавшись классическим законом равномерного распределения энергии по степеням свободы.
Формула Рэлея-Джинса для спектральной плотности энергетической светимости черного тела имеет вид
,
(6.8)
где < > = КТ - средняя энергия осциллятора с собственной частотой. Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергии одинаковы, поэтому средняя энергия каждой колебательной степени свободы < >=КТ.
Как показал опыт, выражение (6.8) согласуется с эксперимен-тальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея - Джинса приводит к абсурду. Действительно, вычисленная с использованием (6.8) энергетическая светимость черного тела (см.(5.5))
,
в то время как по закону Стефана-Больцмана Rе пропорциональна четвертой степени температуры. Этот результат получил название "ультрафиолетовой катастрофы". Таким образом, в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.
Правильное, согласующееся с опытными данными, выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т.е. принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями - квантами, причем энергия кванта пропорциональна частоте колебания:
,
(6.9)
где
h=6,62510
Дж *
с
– постоянная
Планка. Так
как излучение ис-пускается порциями,
то энергия осциллятора
может принимать лишь определенные
дискретные значения, кратные целому
числу элемен-тарных порций энергии о:
=nh (n=0,1,2,...).
Планк вывел для универсальной функции Кирхгофа формулу
,
(6.10)
которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил в 1900 г. ставшим датой рождения квантовой физики.
Из формулы Планка, зная универсальные постоянные h, k и с, можно вычислить постоянные Стефана-Больцмана и b Вина. А зная экспериментальные значения и b, можно вычислить значения h и k.
Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения. Следовательно, полное решение основной задачи теплового излучения, поставленной Кирхгофом, стало возможным лишь благодаря революционной квантовой гипотезе Планка.