
- •Введение
- •1. Упругие волны
- •1.1. Волновые процессы Продольные и поперечные волны
- •1.2. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •Учитывая (1.3), уравнению (1.2) можно придать вид
- •Предположим, что при волновом процессе фаза постоянна, т.Е.
- •Продифференцировав выражение (1.5) и сократив на , получим
- •1.3. Интерференция волн.
- •1.4. Стоячие волны
- •В точках, где
- •2. Электромагнитные волны
- •2.1. Экспериментальное получение электромагнитных волн
- •2.2. Дифференциальное уравнение электромагнитной волны
- •2.3. Энергия электромагнитных волн
- •3 Интерференция света
- •3.1. Развитие представлений о природе света
- •3.2. Когерентность и монохроматичность световых волн
- •3.3.Условия интерференции света
- •Если оптическая разность хода равна целому числу волн в вакууме
- •3.4. Методы наблюдения интерференции света
- •3.5. Расчет интерференционной картины от двух источников
- •3.6. Интерференция света в тонких пленках
- •3.7. Применение интерференции света
- •4. Дифракция света
- •4.1. Принцип Гюйгенса-Френеля
- •4.2. Метод зон Френеля. Прямолинейное распространение света
- •4.3.Дифракция Фраунгофера на одной щели
- •4.4. Дифракция Фраунгофера на дифракционной решетке
- •5.2. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •5.3. Поляризационные призмы и поляроиды
- •5.4. Искусственная оптическая анизотропия
- •5.5. Вращение плоскости поляризации
- •6. Квантовая природа излучения
- •6.1. Тепловое излучение и его характеристики
- •6.2. Закон Кирхгофа
- •Закон Стефана-Больцмана и смещение Вина
- •6.4. Формула Рэлея-Джинса и Планка
- •Планк вывел для универсальной функции Кирхгофа формулу
- •6.5. Оптическая пирометрия и тепловые источники света
- •6.6. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •6.7. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •6.8. Применение фотоэффекта
- •6.9 Масса и импульс фотона.
- •6.10. Диэлектрическое единство корпускулярных и волновых свойств электромагнитного излучения
- •7. Теория атома водорода по бору
- •Модели атома Томсона и Резерфорда
- •Линейчатый спектр атома водорода
- •Постулаты Бора
- •7.4. Спектр атома водорода по Бору
- •8. Элементы квантовой физики
- •Корпускулярно-волновой дуализм свойств вещества
- •8.2. Соотношение неопределенностей
- •Волновая функция и её статистический смысл
- •Величина
- •8.4. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •Спин электрона. Спиновое число
- •Согласно общим выводам квантовой механики, спин квантуется по закону
- •Принцип Паули. Распределение электронов в атоме по состояниям
- •10. Элементы физики твердого тела
- •Понятие о зонной теории твердых тел
- •10.2. Металлы, диэлектрики и полупроводники по зонной теории
- •10.4. Примесная проводимость полупроводников
- •Контакт электронного и дырочного полупроводников
- •10.6. Полупроводниковые диоды и триоды
- •11. Элементы физики атомного ядра
- •11.1. Размер, состав и заряд атомного ядра. Массовое и зарядовое число
- •11.2. Дефект массы и энергия связи ядра
- •11.3. Ядерные силы. Модели ядра
- •11.4. Радиоактивное излучение и его виды
- •Закон радиоактивного распада. Правила смещения
- •11.6. Элементарные частицы и типы взаимодействий
- •11.7. Частицы и античастицы
- •11.8. Классификация элементарных частиц. Кварки
6.2. Закон Кирхгофа
Кирхгоф, опираясь на второй закон термодинамики и анализируя условия равновесного излучения в изолированной системе тел, установил количественную связь между спектральной плотностью энергетической светимости и спектральной поглощательной способностью тел. Отношение спектральной плотности энергетической светимости к поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры (закон Кирхгофа):
(6.3)
Для
черного тела
,
поэтому из закона Кирхгофа
(см.(6.3))
вытекает, что R,Т
для черного тела равна r,Т.
Таким образом, универсальная
функция Кирхгофа
r,Т
есть не что иное, как спектральная
плотность
энергетической
светимости черного тела.
Следовательно, согласно закону Кирхгофа,
для всех тел отношение спектральной
плотности энергетической светимости
к спектральной поглощательной способности
равно спектральной плотности энергетической
светимости черного тела при той же
температуре и частоте.
Из закона Кирхгофа следует, что спектральная плотность энергетической светимости любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при тех же значениях Т и ), т.к. А,Т < 1. Поэтому R,Т < r,Т. Кроме того, если тело не поглощает электромагнитные волны какой-то частоты, то оно их и не излучает, т.к. при А,Т = 0; R,Т = 0.
Используя закон Кирхгофа, выражению для энергетической светимости тела (6.2) можно придать вид
.
Для серого тела
(6.4)
где
(6.5)
энергетическая светимость черного тела (зависит только от температуры).
Закон Кирхгофа описывает только тепловое излучение, являясь настолько характерным для него, что может служить надежным критерием для определения природы излучения. Излучение, которое не подчиняется законам Кирхгофа, не является тепловым.
Закон Стефана-Больцмана и смещение Вина
Из закона Кирхгофа следует, что спектральная плотность энергетической светимости черного тела является универсальной функцией, поэтому нaхождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения.
Австрийский физик Й. Стефан, анализируя экспериментальные данные, и Л. Больцман, применяя термодинамический метод, решили эту задачу лишь частично, установив зависимость энергетической светимости R от температуры. Согласно закону Стефана-Больцмана,
,
(6.6)
т.е.
энергетическая светимость черного тела
пропорциональна четвертой степени его
термодинамической температуры;
-постоянная
Стефана-Больцмана: ее экспериментальное
значение равно 5,7l0
Вт
(м2К4
).
Закон Стефана - Больцмана, определяя зависимость Rе от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции r,Т от длины волны при различных температурах (рис.32) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости r,т и осью абсцисс, пропорциональна энергетической светимости Rе черного тела и, следовательно, по закону Стефана - Больцмана, четвертой степени температуры.
Немецкий физик В.Вин, опираясь на законы термо- и электродина-мики, установил зависимость длины волны max, соответствующей максимуму функции r,т от температуры Т. Согласно закону смещения Вина,
,
(6.7)
т.e.
длина волны max,
соответствующая максимальному значению
спектральной плотности энергетической
светимости r,т
черного тела, обратно пропорциональна
его термодинамической температуре; b
- постоянная
Вина: ее экспериментальное
значение равно
2,910
мк.
Выражение (6.7) потому называют законом
смещения Вина, что оно показывает
смещение положения максимума функции
r,т
по мере возрастания температуры в
области коротких длин волн. Этот закон
объясняет, почему при понижении
температуры нагретых тел в их спектре
все сильнее преобладает длинноволновое
излучение. Несмотря на то, что законы
Стефана-Больцмана и Вина играют в теории
теплового излучения важную роль, они
являются частными законами, т.к. не дают
общей картины распределения энергии
по частотам при различных температурах.