
- •Введение
- •1. Упругие волны
- •1.1. Волновые процессы Продольные и поперечные волны
- •1.2. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •Учитывая (1.3), уравнению (1.2) можно придать вид
- •Предположим, что при волновом процессе фаза постоянна, т.Е.
- •Продифференцировав выражение (1.5) и сократив на , получим
- •1.3. Интерференция волн.
- •1.4. Стоячие волны
- •В точках, где
- •2. Электромагнитные волны
- •2.1. Экспериментальное получение электромагнитных волн
- •2.2. Дифференциальное уравнение электромагнитной волны
- •2.3. Энергия электромагнитных волн
- •3 Интерференция света
- •3.1. Развитие представлений о природе света
- •3.2. Когерентность и монохроматичность световых волн
- •3.3.Условия интерференции света
- •Если оптическая разность хода равна целому числу волн в вакууме
- •3.4. Методы наблюдения интерференции света
- •3.5. Расчет интерференционной картины от двух источников
- •3.6. Интерференция света в тонких пленках
- •3.7. Применение интерференции света
- •4. Дифракция света
- •4.1. Принцип Гюйгенса-Френеля
- •4.2. Метод зон Френеля. Прямолинейное распространение света
- •4.3.Дифракция Фраунгофера на одной щели
- •4.4. Дифракция Фраунгофера на дифракционной решетке
- •5.2. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •5.3. Поляризационные призмы и поляроиды
- •5.4. Искусственная оптическая анизотропия
- •5.5. Вращение плоскости поляризации
- •6. Квантовая природа излучения
- •6.1. Тепловое излучение и его характеристики
- •6.2. Закон Кирхгофа
- •Закон Стефана-Больцмана и смещение Вина
- •6.4. Формула Рэлея-Джинса и Планка
- •Планк вывел для универсальной функции Кирхгофа формулу
- •6.5. Оптическая пирометрия и тепловые источники света
- •6.6. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •6.7. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •6.8. Применение фотоэффекта
- •6.9 Масса и импульс фотона.
- •6.10. Диэлектрическое единство корпускулярных и волновых свойств электромагнитного излучения
- •7. Теория атома водорода по бору
- •Модели атома Томсона и Резерфорда
- •Линейчатый спектр атома водорода
- •Постулаты Бора
- •7.4. Спектр атома водорода по Бору
- •8. Элементы квантовой физики
- •Корпускулярно-волновой дуализм свойств вещества
- •8.2. Соотношение неопределенностей
- •Волновая функция и её статистический смысл
- •Величина
- •8.4. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •9. Элементы современной фи3ики атомов и молекул
- •9.1. Атом водорода в квантовой механике
- •Спин электрона. Спиновое число
- •Согласно общим выводам квантовой механики, спин квантуется по закону
- •Принцип Паули. Распределение электронов в атоме по состояниям
- •10. Элементы физики твердого тела
- •Понятие о зонной теории твердых тел
- •10.2. Металлы, диэлектрики и полупроводники по зонной теории
- •10.4. Примесная проводимость полупроводников
- •Контакт электронного и дырочного полупроводников
- •10.6. Полупроводниковые диоды и триоды
- •11. Элементы физики атомного ядра
- •11.1. Размер, состав и заряд атомного ядра. Массовое и зарядовое число
- •11.2. Дефект массы и энергия связи ядра
- •11.3. Ядерные силы. Модели ядра
- •11.4. Радиоактивное излучение и его виды
- •Закон радиоактивного распада. Правила смещения
- •11.6. Элементарные частицы и типы взаимодействий
- •11.7. Частицы и античастицы
- •11.8. Классификация элементарных частиц. Кварки
4.2. Метод зон Френеля. Прямолинейное распространение света
Принцип Гюйгенса-Френеля в рамках волновой теории должен был ответить на вопрос о прямолинейном распространении света. Френель решил эту задачу, рассмотрев взаимную интерференцию вторичных волн и применив прием, получивший название метода зон Френеля.
Рис. 16
Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника S (рис. 16). Согласно принципу Гюйгенса-Френеля, заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ô, являющейся поверхностью фронта волны, идущей из S (поверхность сферы с центром S). Френель разбил волновую поверхность О на кольцевые зоны такого размера, чтобы расстояния
от
краев зоны до М отличались на
,
т.е.
.
Подобное разбиение фронта волны на
зоны можно выполнить, проведя с центром
в точке М сферы радиусами
,
Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на /2, то в точку М они приходят в противоположной фазе, и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М
(4.1)
где
-
амплитуды колебаний, возбуждаемых 1-й,
2-й,..., m-й
зонами. Интенсивность излучения в
направлении точки М уменьшается с ростом
m
и вследствие увеличения расстояния от
зоны до точки М. Учитывая оба этих
фактора, можем записать
В качестве допустимого приближения можно считать, что амплитуда колебания Аm, от некоторой m-й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон, т.е.
.
(4.2)
Тогда выражение (4.1) можно записать в виде
А = А1/2 + (А1/2 – А2 + А3/2) + (А3/2 – А4 +А5/2) +…=А1/2. (4.3)
Выражения, стоящие в скобках, согласно (4.2), равны нулю, а оставшаяся часть от амплитуды последней зоны + А m /2 ничтожно мала.
Таким образом, амплитуда, создаваемая в произвольной точке М сферической волновой поверхностью, равна половине амплитуды, создаваемой одной центральной зоной. Следовательно, действие всей волновой поверхности на точку М сводится к действию ее малого участка, который меньше центральной зоны. Расчеты показывают, что радиус внешней границы m-й зоны Френеля
.
(4.4)
При a = b = 10 см и = 0,5 мкм радиус первой (центральной) зоны r1=0,158 мм. Следовательно, распространение света от S к М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SМ, т.е. прямолинейно. Таким образом, принцип Гюйгенса-Френеля позволяет объяснить прямолинейное распространение света в однородной среде.
Правомерность
деления волнового фронта на зоны Френеля
подтверждена экспериментально. Для
этого используются зонные
пластинки.
В простейшем случае стеклянные пластинки,
состоящие из системы чередующихся
прозрачных и непрозрачных концентрических
колец, построенных по принципу
расположения зон Френеля, т.е. с радиусами
rm
зон Френеля, определяемыми выражением
(4.3) для данных значений а, b
и
(m=0,2,4,...
для прозрачных и m=1,3,5,...
для непрозрачных колец). Если поместить
зонную пластинку на расстоянии
а от точечного
источника и на расстоянии
b
от точки наблюдения на линии, соединяющей
эти две точки, то для света длиной
волны
она перекроет четные зоны и оставит
свободными нечетные начиная с
центральной. В итоге результирующая
амплитуда
должна быть
больше, чем при полностью открытом
фронте. И в самом деле: на опыте зонная
пластинка во много раз увеличивает
интенсивность света в точке М,
действуя подобно собирающей линзе.