
- •Предисловие
- •1.1.Схема магистрального газопровода
- •1.2. Оборудование для очистки и подготовки газа
- •1.2.1. Очистка газа от механических примесей, воды, сероводорода и углекислоты
- •1.2.2. Источники загрязнения магистральных газопроводов
- •1.2.3. Методы очистки газа от механических примесей
- •1.2.4. Конструкции пылеуловителей
- •1.2.5. Технологический расчет масляного вертикального пылеуловителя
- •1.2.8. Эксплуатация и ремонт аппаратов по очистке газа
- •1.3. Оборудование для осушки газа
- •1.3.1. Общие положения
- •1.3.2. Установки осушки газа и их эксплуатация
- •1.3.2.1. Абсорбционный способ осушки газа
- •1.3.2.3. Адсорбционный способ осушки газа
- •1.3.3.1. Методы борьбы с гидратообразованием
- •1.4. Оборудование компрессорных станций
- •1.4.1. Эксплуатация оборудования кс
- •1.4.2. Опыт применения авиационных двигателей в гпа
- •1.4.3. Гпа нового поколения
- •1.5. Оборудование для одоризации газа
- •2.1. Схема магистрального нефтепровода и нефтепродуктопровода
- •2.2. Оборудование головных сооружений нефтепроводов
- •2.2.1. Сбор и подготовка нефти к дальнейшей транспортировке 2.2.1.1. Сбор и подготовка нефти на промысле
- •2.2.1.2. Основные системы сбора продукции скважин
- •2.2.1.3. Установки для подготовки нефти
- •2.2.1.4. Установка подготовки воды
- •2.2.2. Автоматизированные групповые замерные установки
- •2.2.3. Оборудование для обезвоживания и обессоливаиия нефти
- •2.2.4. Оборудование для отделения газа от пластовой жидкости
- •2.2.5. Оборудование для очистки и подготовки сточных вод
- •2.3. Насосное оборудование 2.3.1 Центробежные насосы
- •2.3.2. Электродвигатели
- •2.3.3. Насосы "Sulzer pumps"
- •2.3.4. Виброизолирующие компенсирующие системы
- •2.4. Оборудование для зашиты от гидравлических ударов
- •2.5. Фильтры-грязеуловители
- •3.1. Трубопроводная арматура
- •3.1.1. Основные термины и определения
- •1. По области применения.
- •2. По функциональному назначению (виду).
- •По температурному режиму:
- •По способу присоединения к трубопроводу.
- •По способу герметизации.
- •8. По способу управления.
- •3.2. Теплообменное оборудование и аппараты воздушного охлаждения
- •3.2.1. Классификация теплообменных аппаратов
- •3.2.2. Аппараты воздушного охлаждении 3.2.2.1. Классификация аво
- •3.2.2.2. Поперечное орсбреине и крепление груб
- •3.2.2.3. Охлаждение газа на компрессорных станциях
- •3.3. Узлы запуска и приема средств очистки и диагностики линейной части
- •3.3.1. Устройства камер запуска и приёма на газопроводах
- •3.3.2. Устройства камер запуска п приема на нефтепроводах
- •3.4. Расходомеры
- •3.4.2. Классификация расходомеров
- •4.1. Общие положения
- •4.5.2. Область и условия применения расчетных формул
- •4.5.3. Расчет конических обечаек, нагруженных давлением
- •4.6. Расчет на прочность нефтегазового оборудования при малоцикловых нагрузках
- •4.6.1. Условия применения расчетных формул
- •4.6.2. Циклы нагружения
- •4.6.5. Уточненный расчет на малоцикловую усталость
- •5.1. Классификация подземных г азонефтехранилищ
- •5.2. Основные требования нормативных документов к проектированию, строительству и эксплуатации подземных газонефтехранилищ
- •5.3. Подземные хранилища в отложениях каменной соли
- •5.3.1. Методы сооружения подземных емкостей размывом через буровые скважины
- •5.3.2. Оборудование и методы контроля формообразования подземных емкостей
- •5.3.3. Оборудование и методы интенсификации процесса размыва подземных емкостей в отложениях каменной соли
- •5.3.4. Подземные резервуары двухъярусного типа
- •5.3.5. Подземное пиленохранилище
- •5.3.6. Подземные резервуары для хранения шфлу и стабильного конденсата
- •5.3.7. Подземные хранилища гелиевого концентрата
- •5.3.8. Риск эксплуатации подземных хранилищ в отложениях каменной соли
- •5.4. Хранилища шахтного типа
- •5.4.2. Подземные хранилища шахтного типа
- •5.4.3. Выбор оптимальных параметров и оценка прочности подземных хранилищ
- •5.4.4. Обустройство вертикальных и горизонтальных выработок
- •5.4.5. Оборудование для герметизации подземных газонефтехранилищ шахтного типа
- •5.5. Подземные хранилища, созданные глубинными взрывами
- •5.6. Хранение жидких углеводородов в вечномерзлых грунтах
- •5.7. Специальное оборудование подземных газонефтехранилищ
- •5.7.1. Специальное устьевое и скважинное оборудование
- •5.7.2. Скважиннан аппаратура контроля формообразования
- •5.8. Оценка потерь нефтепродуктов
- •6.1.2. Основные задачи и функции
- •6.2.2. Подготовка и аттестация
- •6.2.3. Нормативное регулирование в области промышленной безопасности
- •6.2.5. Декларирование промышленной безопасности
- •6.3. Основные положения производственного контроля за соблюдением требований промышленной безопасности
- •6.4. Технический надзор и производственный контроль на объектах трубопроводного транспорта
- •6.4.1. Организация технического надзора на объектах магистральных трубопроводов
- •6.4.2. Особенности функционирования контрольных служб в трубопроводном строительстве
- •6.4.3. Основные требования, предъявляемые к производственному контролю в трубопроводном строительстве
- •6.4.3. Основные требования, предъявляемые к производственному контролю в трубопроводном строительстве
- •6.4.4. Классификация методов производственного контроля в трубопроводном строительстве
- •6.4.5. Задачи и функции производственного контроля в трубопроводном строительстве
- •6.5. Надзор за изготовлением, монтажом и ремонтом оборудования
- •6.6. Применение оборудования и технических устройств на опасных производственных объектах
- •Оошетствующий сертификат установленного образца.
- •6.7. Международные стандарты системы управления качеством iso 9000
- •6.7.1. Основные понятия и терминология
- •Iso 9000 — это серия добровольных международных стандартов для системы управления (менеджмента) качеством (далее — система качества).
- •6.7.2. Классификация стандартов системы управления качеством
- •6.7.3. Базовые требования к производственному процессу
- •6.7.4. Управление качеством производственных процессов
- •6.7.5. Прохождение сертификации
- •6.8. Техническое регулирование в трубопроводном транспорте
- •6.8.1. Основные понятия и принципы Закона "о техническом регулировании"
- •6.8.2. Нормативно-техническая документация 6.8.2.1. Уровни нормативных документов
- •6.8.2.2. Технические регламенты
- •6.8.2.3. Национальные стандарты
- •6.8.2.4. Стандарты организаций
- •6.8.2.5. Общие и специальные технические требования
- •6.8.2.6. Типовые технические и проектные решения, типовые проекты
- •7.1. Понятие надежности
- •7.2. Показатели надежности
- •7.3. Определение вероятности безотказной работы оборудования
- •7.6. Основные методы резервирования
4.1. Общие положения
Расчеты на прочность
оборудования, сосудов и аппаратов
газонефтепроводов должны выполняться
в соответствии с нормативно-техническими
документами и технологическими
регламентами, действующими на предприятиях
ТЭК страны на базе ГОСТ 14249-89, ГОСТ
24755-89, ГОСТ 25859-83 и др.[ 18-22, 30-33].
Расчетная температура
Расчетная температура используется для определения физико-механических характеристик материала и допускаемых напряжений. За расчетную температуру стенки сосуда или аппарата принимают наибольшее значение температуры стенки. При температуре ниже 20"С за расчетную принимают температуру 20 "С. В случае обогрева открытым пламенем, отработанными газами или электронагревателями расчетную температуру принимают равной температуре среды, увеличенной на 20 "С при закрытом обогреве и на 50 "С при прямом обогреве, если нет более точных данных [18, 30-32J.
Рабочее, расчетное и пробное давление
Под рабочим давлением для сосуда и аппарата понимается максимальное внутреннее избыточное или наружное давление, возникающее при нормальном протекании рабочего процесса, без учета гидростатического давления среды и без учета допускаемого кратковременного повышения давления во время действия предохранительного клапана или других предохранительных устройств.
Под расчетным давлением понимается давление, на которое проводится расчет на прочность. Расчетное давление принимается равным рабочему давлению.
Еели действует гидростатическое давление на 5 % выше рабочего, то расчетное давление повысится на это же значение.
Расчетные усилия и моменты
За расчетные усилия и моменты принимаются усилия и моменты, возникающие в результате действия собственной массы присоединенных трубопроводов, ветровой, снеговой и других нагрузок.
Расчетные значения [ст] предела текучести, модуля продольной упругости, временного сопротивления и коэффициентов линейного расширения приведены в Приложениях И, К, Л, М [57].
Коэффициент запаса устойчивости nу при расчете сосудов и аппаратов на устойчивость по нижним критическим напряжениям в пределах упругости следует принимать:
2, 4 — для рабочих условий;
8 — для условий испытания и монтажа.
Коэффициенты прочности сварных швов
При расчете на прочность сварных элементов сосудов и аппаратов в расчетные формулы следует вводить следующие коэффициенты прочности сварных соединений:
4.5.2. Область и условия применения расчетных формул
Расчетные формулы применимы при соотношении между толщиной стен- наружной обечайки и диаметром в пределах
Выполнение такого условия для пологого конического днища (а,>70°) не требуется.
Расчетные формулы применимы при условии, что расчетные температуры не превышают значений, при которых учитывается ползучесть металлов, n. е. при температурах, когда допускаемое напряжение определяют только по пределу текучести или временному сопротивлению (пределу прочности). Гели точных данных не имеется, то формулы применимы при условии, что расчетная температура стенки обечайки из углеродистой стали не превышает 180 "С, из низколегированной стали — 480 °С и из аустенитной стали — 525 "С.
Расчетные формулы настоящего стандарта не применимы для расчета на прочность конических переходов в местах крепления рубашки к корпусу.
В этом случае расчет проводят по ГОСТ 25867.
Расчетные формулы не применимы, если расстояние между двумя соседними узлами обечаек менее суммы соответствующих расчетных длин обечаек или если расстояние от узлов до опорных элементов сосуда (за исключением юбочных опор и опорных колец) менее удвоенной расчетной длины обечайки.
Расчетные формулы применимы при условии, что исполнительные длины переходных частей обечаек не менее расчетных длин и а2.
Гели это условие не выполнено, то нужно провести проверку допускаемого давления, причем вместо 5, и 52 подставляют:
- для соединения обечаек без тороидального перехода
Исполнительную толщину стенки конического элемента в месте соединения двух обечаек 5,, 52 или 5Т всегда принимают не менее толщины лк; исполнительную толщину стенки цилиндрического элемента в месте соединения двух обечаек — не меньше минимальной толщины стенки.
Расчет укрепления отверстий конических обечаек (рис. 4.11-4.12) проводят в соответствии с ГОСТ 24755.
Расчет толщины стенок переходной части обечаек проводят либо методом последовательных приближений на основании предварительного подбо
Расчет применим также для кососимметричных обечаек, соединенных с цилиндрическими обечайками. Расчетные величины a,, D и D, следует принимать по рис. 4.9, 4.10.