
- •Предисловие
- •1.1.Схема магистрального газопровода
- •1.2. Оборудование для очистки и подготовки газа
- •1.2.1. Очистка газа от механических примесей, воды, сероводорода и углекислоты
- •1.2.2. Источники загрязнения магистральных газопроводов
- •1.2.3. Методы очистки газа от механических примесей
- •1.2.4. Конструкции пылеуловителей
- •1.2.5. Технологический расчет масляного вертикального пылеуловителя
- •1.2.8. Эксплуатация и ремонт аппаратов по очистке газа
- •1.3. Оборудование для осушки газа
- •1.3.1. Общие положения
- •1.3.2. Установки осушки газа и их эксплуатация
- •1.3.2.1. Абсорбционный способ осушки газа
- •1.3.2.3. Адсорбционный способ осушки газа
- •1.3.3.1. Методы борьбы с гидратообразованием
- •1.4. Оборудование компрессорных станций
- •1.4.1. Эксплуатация оборудования кс
- •1.4.2. Опыт применения авиационных двигателей в гпа
- •1.4.3. Гпа нового поколения
- •1.5. Оборудование для одоризации газа
- •2.1. Схема магистрального нефтепровода и нефтепродуктопровода
- •2.2. Оборудование головных сооружений нефтепроводов
- •2.2.1. Сбор и подготовка нефти к дальнейшей транспортировке 2.2.1.1. Сбор и подготовка нефти на промысле
- •2.2.1.2. Основные системы сбора продукции скважин
- •2.2.1.3. Установки для подготовки нефти
- •2.2.1.4. Установка подготовки воды
- •2.2.2. Автоматизированные групповые замерные установки
- •2.2.3. Оборудование для обезвоживания и обессоливаиия нефти
- •2.2.4. Оборудование для отделения газа от пластовой жидкости
- •2.2.5. Оборудование для очистки и подготовки сточных вод
- •2.3. Насосное оборудование 2.3.1 Центробежные насосы
- •2.3.2. Электродвигатели
- •2.3.3. Насосы "Sulzer pumps"
- •2.3.4. Виброизолирующие компенсирующие системы
- •2.4. Оборудование для зашиты от гидравлических ударов
- •2.5. Фильтры-грязеуловители
- •3.1. Трубопроводная арматура
- •3.1.1. Основные термины и определения
- •1. По области применения.
- •2. По функциональному назначению (виду).
- •По температурному режиму:
- •По способу присоединения к трубопроводу.
- •По способу герметизации.
- •8. По способу управления.
- •3.2. Теплообменное оборудование и аппараты воздушного охлаждения
- •3.2.1. Классификация теплообменных аппаратов
- •3.2.2. Аппараты воздушного охлаждении 3.2.2.1. Классификация аво
- •3.2.2.2. Поперечное орсбреине и крепление груб
- •3.2.2.3. Охлаждение газа на компрессорных станциях
- •3.3. Узлы запуска и приема средств очистки и диагностики линейной части
- •3.3.1. Устройства камер запуска и приёма на газопроводах
- •3.3.2. Устройства камер запуска п приема на нефтепроводах
- •3.4. Расходомеры
- •3.4.2. Классификация расходомеров
- •4.1. Общие положения
- •4.5.2. Область и условия применения расчетных формул
- •4.5.3. Расчет конических обечаек, нагруженных давлением
- •4.6. Расчет на прочность нефтегазового оборудования при малоцикловых нагрузках
- •4.6.1. Условия применения расчетных формул
- •4.6.2. Циклы нагружения
- •4.6.5. Уточненный расчет на малоцикловую усталость
- •5.1. Классификация подземных г азонефтехранилищ
- •5.2. Основные требования нормативных документов к проектированию, строительству и эксплуатации подземных газонефтехранилищ
- •5.3. Подземные хранилища в отложениях каменной соли
- •5.3.1. Методы сооружения подземных емкостей размывом через буровые скважины
- •5.3.2. Оборудование и методы контроля формообразования подземных емкостей
- •5.3.3. Оборудование и методы интенсификации процесса размыва подземных емкостей в отложениях каменной соли
- •5.3.4. Подземные резервуары двухъярусного типа
- •5.3.5. Подземное пиленохранилище
- •5.3.6. Подземные резервуары для хранения шфлу и стабильного конденсата
- •5.3.7. Подземные хранилища гелиевого концентрата
- •5.3.8. Риск эксплуатации подземных хранилищ в отложениях каменной соли
- •5.4. Хранилища шахтного типа
- •5.4.2. Подземные хранилища шахтного типа
- •5.4.3. Выбор оптимальных параметров и оценка прочности подземных хранилищ
- •5.4.4. Обустройство вертикальных и горизонтальных выработок
- •5.4.5. Оборудование для герметизации подземных газонефтехранилищ шахтного типа
- •5.5. Подземные хранилища, созданные глубинными взрывами
- •5.6. Хранение жидких углеводородов в вечномерзлых грунтах
- •5.7. Специальное оборудование подземных газонефтехранилищ
- •5.7.1. Специальное устьевое и скважинное оборудование
- •5.7.2. Скважиннан аппаратура контроля формообразования
- •5.8. Оценка потерь нефтепродуктов
- •6.1.2. Основные задачи и функции
- •6.2.2. Подготовка и аттестация
- •6.2.3. Нормативное регулирование в области промышленной безопасности
- •6.2.5. Декларирование промышленной безопасности
- •6.3. Основные положения производственного контроля за соблюдением требований промышленной безопасности
- •6.4. Технический надзор и производственный контроль на объектах трубопроводного транспорта
- •6.4.1. Организация технического надзора на объектах магистральных трубопроводов
- •6.4.2. Особенности функционирования контрольных служб в трубопроводном строительстве
- •6.4.3. Основные требования, предъявляемые к производственному контролю в трубопроводном строительстве
- •6.4.3. Основные требования, предъявляемые к производственному контролю в трубопроводном строительстве
- •6.4.4. Классификация методов производственного контроля в трубопроводном строительстве
- •6.4.5. Задачи и функции производственного контроля в трубопроводном строительстве
- •6.5. Надзор за изготовлением, монтажом и ремонтом оборудования
- •6.6. Применение оборудования и технических устройств на опасных производственных объектах
- •Оошетствующий сертификат установленного образца.
- •6.7. Международные стандарты системы управления качеством iso 9000
- •6.7.1. Основные понятия и терминология
- •Iso 9000 — это серия добровольных международных стандартов для системы управления (менеджмента) качеством (далее — система качества).
- •6.7.2. Классификация стандартов системы управления качеством
- •6.7.3. Базовые требования к производственному процессу
- •6.7.4. Управление качеством производственных процессов
- •6.7.5. Прохождение сертификации
- •6.8. Техническое регулирование в трубопроводном транспорте
- •6.8.1. Основные понятия и принципы Закона "о техническом регулировании"
- •6.8.2. Нормативно-техническая документация 6.8.2.1. Уровни нормативных документов
- •6.8.2.2. Технические регламенты
- •6.8.2.3. Национальные стандарты
- •6.8.2.4. Стандарты организаций
- •6.8.2.5. Общие и специальные технические требования
- •6.8.2.6. Типовые технические и проектные решения, типовые проекты
- •7.1. Понятие надежности
- •7.2. Показатели надежности
- •7.3. Определение вероятности безотказной работы оборудования
- •7.6. Основные методы резервирования
3.2.2. Аппараты воздушного охлаждении 3.2.2.1. Классификация аво
Аппараты воздушного охлаждения широко используются в составе ком- прессрных станций магистральных газопроводов для охлаждения газа после компримирования, а также в нефте- и газоперерабатывающей промышленности. Опыт эксплуатации АВО подтверждает высокую эффективность и надежность работы таких аппаратов. Коэффициенты теплопередачи аппаратов составляют 235-582 Вт/(м2К) [2, 4, 8, 11, 31, 48, 50, 51, 71, 91, 99].
Стандартные аппараты воздушного охлаждения в зависимости от конструкции и назначения принято обозначать следующим образом:
АВГ- горизонтальные:
АВЗ - с зигзагообразным расположением секций;
АВГ-Т
- трехконтурные; ABM
-
для малых потоков; АВШ — шатровые (рис.
3.14).
Поверхность
теплообмена этих аппаратов приведена
в табл. 3.3.
Секция аппаратов воздушного охлаждения состоит обычно из четырех, шести или восьми рядов труб, которые расположены по вершинам равносторонних треугольников и закреплены развальцовкой, а в ряде случаев последующей приваркой в двух трубных решетках, имеющих крышки (рис. 3.15).
В АВО применяют трубы длиной от 1,5 до 12 м с внутренним диаметром 21 или 22 мм. Секции могут быть многоходовыми по трубному пространству .
Через пакет сребренных труб нагнетается или прокачивается воздух вентилятором с относительно низкой частотой вращения вала. Поток воздуха может либо нагнетаться в пакет, либо вытягиваться из него [52].
Преимущества нагнетания воздуха состоит в том, что вентилятор и привод находятся в холодном воздухе, что повышает эффективность вентилятора (а это может снизить его стоимость), упрощает крепление вентилятора и привода и облегчает обслуживание. Однако воздушный поток через трубный пучок очень неоднородный, и низкая скорость нагретого воздуха при естественной конвекции может стать причиной рециркуляции горячего воздуха и снижения разности температур. Откачивание воздуха обеспечивает высокие скорости и настолько снижает влияние естественной конвекции, что рециркуляция становится маловероятной. Для защиты пакета труб от механических повреждений и дождя или града применяются жалюзи. Для предотвращения взаимного смещения труб в пучке между ними предусмотрены дистанционные прокладки из алюминиевой ленты шириной 15 мм. Такие секции выпускают на условное давление от 0,6 до 6.4 МПа.
Применяют также конструкции секций с цельносварными неразъемными распределительными камерами. В этом случае для чистки внутренней поверхности труб в наружной стенке камеры против каждой трубы предусматривают отверстие с резьбовой пробкой на прокладке (рис. 3.16).
Для подачи охлаждающего воздуха применяют осевые вентиляторы пропеллерного типа с диаметром колеса от 0,8 до 7 м производительностью до 1,5 млн м3 в ч.
Еще более компактны аппараты трехконтурного типа при размещении секций горизонтальными рядами в три яруса (рис. .14). В средний и верхний ряды (контуры) секций воздух поступает, пройдя между секциями нижнего контура, и выводится с верха аппарата. Из секций нижнего контура нагретый воздух выводится сбоку в окна торцовых стенок аппарата. Таким образом, все секции продуваются параллельными потоками свежего воздуха. Для организации движения воздуха пространства между секциями соседних контуров отделены листами с теплоизоляцией. Секции изготовлены из труб длиной 8 или 12 м. Воздух нагнетается соответственно четырьмя или шестью вентиляторами с диаметром колеса, как и в аппаратах горизонтального типа 2,8 м. Аппараты воздушного охлаждения для высоких давлений (10 МПа и выше) имеют неразъемные трубчатые пучки (рис. 3.17). Пучки состоят из коллекторов 1, выполненных из толстостенных труб, в которые вварены оребренные теплообменные трубы 2.
Аппараты воздушного охлаждения для малых потоков имеют сравнительно небольшую поверхность теплообмена. Секции этих аппаратов по конструкции аналогичны секциям аппаратов горизонтального типа, но выполнены из труб длиной 1,5 или 3 м; при этом устанавливают соответственно один или два вентилятора меньшего диаметра. Колеса вентиляторов крепят непосредственно на валу электродвигателя.
При использовании тихоходных электродвигателей колесо вентилятора можно крепить непосредственно к валу электродвигателя. Обычно частота вращения 160-00 об/мин.
Для снижения шума и уменьшения действия вибраций фундамент привода аппаратов воздушного охлаждения целесообразно выполнять отдельно от фундамента, к которому крепится аппарат. В ряде случаев на вентиляторах можно устанавливать устройства, сигнализирующие или отключающие двигатель при возникновении чрезмерных вибраций. При использовании клиноременной передачи и сравнительно небольшой мощности электродвигателя привод можно монтировать непосредственно на металлоконструкции аппарата без специального фундамента.
Рассмотрим отдельно основные типы аппаратов воздушного охлаждения.
Стандартные аппараты воздушного охлаждения горизонтального типа имеют три секции и вентиляторы с диаметром колеса 2,8 м. При длине труб 4 м устанавливают один вентилятор, при длине 8 м-два, при длине 12 м-три вентилятора. Для аппаратов горизонтального типа целесообразно некоторое увеличение диаметра вентилятора, например, до 3,2 м.
При зигзагообразном расположении секций возможно размещение в пределах заданной площади большего числа секций и большей поверхности, чем при их горизонтальном расположении. 11апример, применяют аппараты с шестью зигзагообразно расположенными секциями из труб длиной 6 м и одним вентилятором.
Для изготовления колес и диффузора целесообразно Применение стеклопластиков. Вентилятор приводится в работу обычно через редуктор или клиноременную передачу.