
- •Предисловие
- •1.1.Схема магистрального газопровода
- •1.2. Оборудование для очистки и подготовки газа
- •1.2.1. Очистка газа от механических примесей, воды, сероводорода и углекислоты
- •1.2.2. Источники загрязнения магистральных газопроводов
- •1.2.3. Методы очистки газа от механических примесей
- •1.2.4. Конструкции пылеуловителей
- •1.2.5. Технологический расчет масляного вертикального пылеуловителя
- •1.2.8. Эксплуатация и ремонт аппаратов по очистке газа
- •1.3. Оборудование для осушки газа
- •1.3.1. Общие положения
- •1.3.2. Установки осушки газа и их эксплуатация
- •1.3.2.1. Абсорбционный способ осушки газа
- •1.3.2.3. Адсорбционный способ осушки газа
- •1.3.3.1. Методы борьбы с гидратообразованием
- •1.4. Оборудование компрессорных станций
- •1.4.1. Эксплуатация оборудования кс
- •1.4.2. Опыт применения авиационных двигателей в гпа
- •1.4.3. Гпа нового поколения
- •1.5. Оборудование для одоризации газа
- •2.1. Схема магистрального нефтепровода и нефтепродуктопровода
- •2.2. Оборудование головных сооружений нефтепроводов
- •2.2.1. Сбор и подготовка нефти к дальнейшей транспортировке 2.2.1.1. Сбор и подготовка нефти на промысле
- •2.2.1.2. Основные системы сбора продукции скважин
- •2.2.1.3. Установки для подготовки нефти
- •2.2.1.4. Установка подготовки воды
- •2.2.2. Автоматизированные групповые замерные установки
- •2.2.3. Оборудование для обезвоживания и обессоливаиия нефти
- •2.2.4. Оборудование для отделения газа от пластовой жидкости
- •2.2.5. Оборудование для очистки и подготовки сточных вод
- •2.3. Насосное оборудование 2.3.1 Центробежные насосы
- •2.3.2. Электродвигатели
- •2.3.3. Насосы "Sulzer pumps"
- •2.3.4. Виброизолирующие компенсирующие системы
- •2.4. Оборудование для зашиты от гидравлических ударов
- •2.5. Фильтры-грязеуловители
- •3.1. Трубопроводная арматура
- •3.1.1. Основные термины и определения
- •1. По области применения.
- •2. По функциональному назначению (виду).
- •По температурному режиму:
- •По способу присоединения к трубопроводу.
- •По способу герметизации.
- •8. По способу управления.
- •3.2. Теплообменное оборудование и аппараты воздушного охлаждения
- •3.2.1. Классификация теплообменных аппаратов
- •3.2.2. Аппараты воздушного охлаждении 3.2.2.1. Классификация аво
- •3.2.2.2. Поперечное орсбреине и крепление груб
- •3.2.2.3. Охлаждение газа на компрессорных станциях
- •3.3. Узлы запуска и приема средств очистки и диагностики линейной части
- •3.3.1. Устройства камер запуска и приёма на газопроводах
- •3.3.2. Устройства камер запуска п приема на нефтепроводах
- •3.4. Расходомеры
- •3.4.2. Классификация расходомеров
- •4.1. Общие положения
- •4.5.2. Область и условия применения расчетных формул
- •4.5.3. Расчет конических обечаек, нагруженных давлением
- •4.6. Расчет на прочность нефтегазового оборудования при малоцикловых нагрузках
- •4.6.1. Условия применения расчетных формул
- •4.6.2. Циклы нагружения
- •4.6.5. Уточненный расчет на малоцикловую усталость
- •5.1. Классификация подземных г азонефтехранилищ
- •5.2. Основные требования нормативных документов к проектированию, строительству и эксплуатации подземных газонефтехранилищ
- •5.3. Подземные хранилища в отложениях каменной соли
- •5.3.1. Методы сооружения подземных емкостей размывом через буровые скважины
- •5.3.2. Оборудование и методы контроля формообразования подземных емкостей
- •5.3.3. Оборудование и методы интенсификации процесса размыва подземных емкостей в отложениях каменной соли
- •5.3.4. Подземные резервуары двухъярусного типа
- •5.3.5. Подземное пиленохранилище
- •5.3.6. Подземные резервуары для хранения шфлу и стабильного конденсата
- •5.3.7. Подземные хранилища гелиевого концентрата
- •5.3.8. Риск эксплуатации подземных хранилищ в отложениях каменной соли
- •5.4. Хранилища шахтного типа
- •5.4.2. Подземные хранилища шахтного типа
- •5.4.3. Выбор оптимальных параметров и оценка прочности подземных хранилищ
- •5.4.4. Обустройство вертикальных и горизонтальных выработок
- •5.4.5. Оборудование для герметизации подземных газонефтехранилищ шахтного типа
- •5.5. Подземные хранилища, созданные глубинными взрывами
- •5.6. Хранение жидких углеводородов в вечномерзлых грунтах
- •5.7. Специальное оборудование подземных газонефтехранилищ
- •5.7.1. Специальное устьевое и скважинное оборудование
- •5.7.2. Скважиннан аппаратура контроля формообразования
- •5.8. Оценка потерь нефтепродуктов
- •6.1.2. Основные задачи и функции
- •6.2.2. Подготовка и аттестация
- •6.2.3. Нормативное регулирование в области промышленной безопасности
- •6.2.5. Декларирование промышленной безопасности
- •6.3. Основные положения производственного контроля за соблюдением требований промышленной безопасности
- •6.4. Технический надзор и производственный контроль на объектах трубопроводного транспорта
- •6.4.1. Организация технического надзора на объектах магистральных трубопроводов
- •6.4.2. Особенности функционирования контрольных служб в трубопроводном строительстве
- •6.4.3. Основные требования, предъявляемые к производственному контролю в трубопроводном строительстве
- •6.4.3. Основные требования, предъявляемые к производственному контролю в трубопроводном строительстве
- •6.4.4. Классификация методов производственного контроля в трубопроводном строительстве
- •6.4.5. Задачи и функции производственного контроля в трубопроводном строительстве
- •6.5. Надзор за изготовлением, монтажом и ремонтом оборудования
- •6.6. Применение оборудования и технических устройств на опасных производственных объектах
- •Оошетствующий сертификат установленного образца.
- •6.7. Международные стандарты системы управления качеством iso 9000
- •6.7.1. Основные понятия и терминология
- •Iso 9000 — это серия добровольных международных стандартов для системы управления (менеджмента) качеством (далее — система качества).
- •6.7.2. Классификация стандартов системы управления качеством
- •6.7.3. Базовые требования к производственному процессу
- •6.7.4. Управление качеством производственных процессов
- •6.7.5. Прохождение сертификации
- •6.8. Техническое регулирование в трубопроводном транспорте
- •6.8.1. Основные понятия и принципы Закона "о техническом регулировании"
- •6.8.2. Нормативно-техническая документация 6.8.2.1. Уровни нормативных документов
- •6.8.2.2. Технические регламенты
- •6.8.2.3. Национальные стандарты
- •6.8.2.4. Стандарты организаций
- •6.8.2.5. Общие и специальные технические требования
- •6.8.2.6. Типовые технические и проектные решения, типовые проекты
- •7.1. Понятие надежности
- •7.2. Показатели надежности
- •7.3. Определение вероятности безотказной работы оборудования
- •7.6. Основные методы резервирования
2.2.1.2. Основные системы сбора продукции скважин
К основным характеристикам системы сбора относят давление и способ транспортировки продукции.
По давлению различают самотечные и высоконапорные системы; по способу транспортировки продукции - раздельные и совместные.
Самотечные системы сбора нефти предусматривают расположение устройств для замера и сепарации нефти в непосредственной близости от скважин, от которых нефть и вода за счет разности геодезических отметок самотеком поступают на сборный пункт. Сборный пункт обслуживает несколько скважин, от него нефть и воду насосами перекачивают к установкам подготовки нефти. Если газ и нефть с водой транспортируются по отдельным трубопроводам, то подобный способ называется раздельным (двухтрубным). На рис 2.5 представлена схема самотечной двухтрубной системы сбора продукции скважин.
В настоящее время обустройство нефтяных месторождений осуществляют с применением высоконапорных однотрубных систем сбора продукции скважин (рис. 2.6).
В высоконапорных системах продукция скважин может транспортироваться на значительные расстояния под устьевым давлением порядка 6 МПа. Высоконапорные однотрубные системы сбора позволяют:
полностью устранить потери легких фракций нефти, доходящие до 3 %;
снизить металлоемкость;
сократить эксплуатационные расходы.
Состав объектов сбора и подготовки нефти к транспортировке решается к каждом отдельном случае в зависимости от состава добываемой продукции и расстояний между месторождениями.
2.2.1.3. Установки для подготовки нефти
Примерно 70 % всей нефти добывают в обводненном состоянии. На разных стадиях разработки нефтяных месторождений содержание воды в нефти колеблется от практически безводной до 98-99 %. При движении нефти и воды по стволу скважины и трубопроводам происходит их взаимное перемешивание и образование эмульсии из-за наличия в нефти особых смолистых веществ - природных эмульгаторов (асфальтены, смолы и т. д.). Вода, соли и механические примеси вызывают непроизводительную загрузку трубопроводного транспорта. При транспорте загрязненной нефти засоряются транспортные коммуникации, оборудование, аппаратура, резервуары, снижается производительность технологических установок нефтепереработки, нарушается технологический режим работы отдельных установок и аппаратов, ухудшается качество нефтепродуктов. Особенно опасно содержание солей в сернистых нефтях: сероводород с хлористым водородом являются особо коррозионными. Поэтому добываемую нефть необходимо освободить от воды, солей и механических примесей как можно раньше, с момента образования эмульсии.
С целью подготовки нефти к дальнейшему трубопроводному транспорту на УКПН выполняют дегазацию, обезвоживание, обессоливание и стабилизацию нефти.
Наиболее целесообразно устанавливать УКПН в пунктах максимальной концентрации нефти на промысле, например в товарных парках.
Процесс стабилизации нефти необходим для уменьшения потерь легких углеводородов (этан, пропан, бутан и т. д.). Он заключается в том, что нефть подогревают до температуры 80-120 °С в специальной стабилизационной колонне и отделяют легкие фракции. После этого они охлаждаются и конденсируются. Продукты стабилизации направляют на газоперерабатывающий завод, а нефть - на нефтеперерабатывающий завод. Обычно стабилизационные установки размещают в районе товарных резервуарных парков или на нефтесборном пункте данного месторождения после установок обезвоживания и обессоливания.
Во время процесса обезвоживания и обессоливаиия основная масса солей удаляется вместе с водой. Однако для предотвращения коррозии оборудования, образования солевых отложений и других нарушений в процессах переработки нефти необходимо ее глубокое обессоливание. Перед обессо- ливанием в нефть подают пресную воду, в результате чего образуется искусственная эмульсия, которую затем подвергают разрушению.
Процесс разрушения нефтяных эмульсий заключается в слиянии капель диспергированной в нефти воды в присутствии деэмульгатора и осаждении укрупнившихся капель. Деэмульгаторы - это поверхностно—актив ные вещества (ПАВ), которые адсорбируются па поверхности глобул воды и образуют адсорбционный слой со значительно меньшей механической прочностью, что облегчает слияние капель воды и способствует разрушению нефтяных эмульсий. УКПН представляет собой небольшой завод по первичной подготовке нефти. Согласно технологической схеме (рис. 2.7), сырая нефть, поступающая по линии I, направляется в теплообменник 2, в котором нагревается до 50-60 °С горячей стабильной нефтью, поступающей по линии III после стабилизационной колонки 8. Подогретая нефть в отстойнике первой ступени обезвоживания 3 частично отделяется от воды и проходит через смеситель 4, где смешивается с пресной водой, поступающей по линии V для удаления солей, и направляется в отстойник второй ступени 5 и по линии VI в электродегидратор. Отделенная вода отводится полициям IV. При необходимости улучшения степени обессоливания применяют несколько смесителей, отстойников и электродегидраторов, включенных последовательно. Обессоленная нефть насосом 14 отправляется в от- парную часть стабилизационной колонны 8 через теплообменник 7, в котором за счет тепла стабильной нефти, поступающей непосредственно снизу стабилизационной колонны, осуществляется нагрев нефти до 150-160 °С.
В стабилизационной колонне 8 происходит отделение легких фракций нефти, которые конденсируются и передаются на ГП3.
В нижней и верхней частях стабилизационной колонны установлены тарелочные устройства, которые способствуют более полному отделению легких фракций.
Внизу отпарной части стабилизационной колонны поддерживают более высокую температуру (до 240 °С), чем температура нефти, поступающей в верхнюю часть. Температура поддерживается циркуляцией стабильной нефти из нижней части стабилизационной колонны через печь 13. Циркуляция стабильной нефти осуществляется насосом 12 по линии X.
В результате нагрева из нефти интенсивно испаряются легкие фракции, которые поступают в верхнюю часть стабилизационной колонны, где на тарелках происходит более четкое разделение на легкие и тяжелые углеводороды. Пары легких углеводородов по линии VII из стабилизационной колонны поступают в конденсатор холодильник 9, где пары охлаждаются до 30 °С, основная их часть конденсируется, накапливается в емкости по линии VII и подаётся на горелки печи 13. Конденсат, или как его еще называют ШФЛУ, - широкие фракции легких углеводородов, перекачивают насосом 11 в емкость хранения по линии IX.
На рис. 2.8 представлена установка подготовки нефти с техническими характеристиками:
количество перерабатываемой нефти 2000 т/ч;
количество пластовой воды 1250 т/ч;
Наряду с отечественными агрегатами, для комплексной подготовки нефти используется и оборудование зарубежных производителей. Одним из наиболее известных поставщиков оборудования для комплексной подготовки нефти является фирма "MALONEY".
На рис. 2.9 представлена установка этой фирмы. Тепловые мощности блоков сепаратора свободной воды и дегидратора-сепаратора составляют - 3 Мкал/ч, а диаметр и длина этих блоков - 3,6 и 18,3 м соответственно.
Основными особенностями продукции этой фирмы являются высокое качество, надежность, долговечность работы оборудования и стоимость.