
Практична частина Задача № 1
Розрахувати та побудувати схему підсилювача на базі ОП з коефіцієнтом передачі –100 і вхідним опором 100 кОм. При цьому необхідно врахувати вплив паразитної ємності та опору схеми, до якої входить підсилювач.
Задача № 2
Розрахувати та побудувати схему підсилювача на базі ОП з коефіцієнтом передачі 10 і вхідним опором 100 кОм. При цьому слід врахувати параметри неінвертувальних підсилювачів.
Задача № 3
Для інтегруючого ОП з коефіцієнтом передачі –10 розрахувати і побудувати принципову схему. Визначити час інтегрування при Uвх=2В. Максимальне значення машинної змінної складає за модулем 10 В.
Задача № 4
Побудувати принципову схему диференційного інтегруючого підсилювача з коефіцієнтами передачі К1=5, К2=10, К3= 4, К4= 8. Визначити величину вихідної напруги через 0,2 С після початку інтегрування, якщо на його відповідних входах існують напруги: U1= 0,2В; U2= 0,1В; U3= 1В; U4= 1В.
Задача № 5
На виході диференційного інтегруючого підсилювача, що має чотири входи, через 0,3С після початку інтегрування зафіксована напруга 7В. Визначити величину напруги на третьому вході, якщо на всі інші входи поступає напруга 1В, а коефіцієнти передачі дорівнюють: К1=3, К2= 8, К3=4, К4= 5. Побудувати принципову схему підсилювача.
Задача № 6
На виході диференційного інтегруючого підсилювача, який має чотири входи, через 0,5С після початку інтегрування зафіксована напруга 8В. Визначити коефіцієнт передачі по третьому вході, якщо на всі інші входи надходить напруга 2В, а коефіцієнти передачі дорівнюють відповідно: К1= 4, К2=6, і К4= 2. Побудувати принципову схему підсилювача.
Задача № 7
Для інтегруючого ОП з коефіцієнтом передачі 8 вихідна напруга через 0,5С після початку інтегрування складає 6В. Побудувати принципову схему підсилювача і визначити вхідну напругу.
Задача № 8
Р
озрахувати
і побудувати схему нелінійного елемента
з використанням напівпровідникових
діодів, який реалізує функцію:
Задача № 9
Р
озрахувати
і побудувати схему нелінійного елемента
з використанням напівпровідникових
діодів, який реалізує функцію:
Задача № 10
Розрахувати і побудувати схему, яка моделює поліном:
10e1(t)-15e2(t)-20e3(t)+5e4(t)=U(t)
Вихідні умови:
машинна змінна знаходиться в межах від –10 до +10В,
всі вхідні змінні мають знак «+»,
опір вихідних ланцюгів джерел змінних складає відповідно: R1=100 Ом, R2=1 кОм, R3=10 Ом, R4=10 кОм,
втрати величин змінних через вплив вхідного опору схеми не повинні перевищувати 1 %.
Задача №11
Розробити програму вирішення задачі:
10x///-5x//+6x/+3x=y(t),
де y(t)=8t2
при початкових умовах: x//(0)=5; x/(0)= -2; x(0)=9.
Час реальний.
Максимальні значення змінних становлять:
x///max=8; x//max= -10; x/max=7; xmax=12; ymax(t))=11.
Задача №12
Розробити програму вирішення задачі:
2x///-15x//+4x/+6x=y(t),
де y(t)=3t2+2t
при початкових умовах: x//(0)=2; x/(0)= -1; x(0)=3.
Час реальний.
Максимальні значення змінних становлять:
x///max=2; x//max= 6; x/max=4; xmax=2; ymax(t)=9.
Задача №13
Розробити програму вирішення задачі:
3x//+4x/+3x-14=y(t),
де y(t)=2t2-9t
при початкових умовах: x/(0)=6; x(0)=2.
Час реальний.
Максимальні значення змінних становлять:
x//max=5; x/max=2; xmax=6; ymax(t)=8.
Задача №14
Розробити програму вирішення задачі:
4x///-2x//=y(t),
де y(t)=t3+12t2-4t
при початкових умовах: x//(0)=-7.
Час реальний.
Максимальні значення змінних становлять:
x///max=9; x//max=-12; x/max=6; xmax=2; ymax(t)=21.
Задача №15
Розробити програму вирішення задачі:
7x///-14x//=y(t),
де y(t)=10t3+8t2+5t
при початкових умовах: x//(0)=-7.
Час реальний.
Максимальні значення змінних становлять:
x///max=7; x//max=-10; x/max=9; xmax=8; ymax(t)=12.
Задача №16
Р
озробити
програму вирішення задачі:
9x//+8x=y(t),
де y(t) – нелінійна функція (див. графік):
при початкових умовах: x/(0)=4; x(0)=7.
Час реальний.
Максимальні значення змінних становлять:
x//max=9; xmax=12; ymax(t)=10.
Задача№17
Р
озробити
програму вирішення задачі:
5x//+4x=y(t),
де y(t) – нелінійна функція (див. графік]:
при початкових умовах: x/(0)=2; x(0)=9.
Час реальний.
Максимальні значення змінних становлять:
x//max=8; xmax=10; ymax(t)=7.
Задача №18
В
изначити,
яке рівняння моделює схема (див. рис.).
Знайти
величину
U(t)
через 10 мС після
початку
моделювання.
Обчислити
максимальний час моделювання.
Вихідні дані: R=1МОм, С=1мкФ, машинна змінна знаходиться в межах від –10 до +10В, Е=1В.
Задача № 19
Визначити, яке рівняння моделює схема (див. рис.). Знайти величину U(t) через 20 мС після початку моделювання. Розрахувати максимальний час моделювання.
Вихідні дані: R=1МОм, С=1мкФ, машинна змінна знаходиться в межах від 10 до +10В, Е=1В.
Задача №20
Р
озробити
програму вирішення задачі:
10x//+6x/+2x=y(t),
де y(t) – нелінійна функція (див. графік):
при початкових умовах: x/(0)=2; x(0)=1.
Час реальний.
Максимальні значення змінних становлять:
x/max=8; xmax=10; ymax(t)=6.
Список літератури
Хоровиц П., Хилл У. Искусство схемотехники. – М.: Мир, 1998.
Анисимов Б.В., Голубкин В.Н., Петраков С.В. Аналоговые и гибридные ЭВМ. – М.: Высш. шк., 1986.
Прагер И.Л. Электронные аналоговые вычислительные машины. – М.: Машиностроение, 1979.
Орнатський П.П. Автоматичні вимірювання і прилади. – К.: Вища шк., 1986.
Гутніков В.С. Інтегральна електроніка у вимірювальних пристроях. – М.: Енергоатомиздат, 1988.
Федорков Б.Г., Телець В.А. Мікросхеми ЦАП і АЦП. – М.: Енергоатомиздат, 1990.
Алексеенко А.Г. и др. Применение прецизионных аналоговых микросхем. – М.: Радио и связь, 1985.