- •Часть 1
- •Оглавление
- •Часть 1
- •Лекция 1 введение
- •1. Цели и задачи дисциплины. Ее место в учебном процессе.
- •2. История развития систем ии
- •3. Философские аспекты систем ии
- •Лекция 2 искуственный интеллект как научное направление
- •1. Человеко-машинные системы с искусственным интеллектом
- •2. Проблема искусственного интеллекта
- •3. Основные направления исследований в системах с искусственным интеллектом
- •Лекция 3 знания и данные
- •1. Знания - необходимая компонента ии
- •2. Макрознания и макроидеи
- •3. Данные и знания. Классификация знаний
- •4. Проблемы представления знаний
- •Лекция 4 представление знаний и рассуждений
- •Лекция 5 логические модели представления знаний
- •1. Предварительные замечания
- •2. Логическая модель представления знаний
- •Лекция 6 псевдофизичесие логики
- •1.Нечеткость в представлении знаний
- •2.Нечеткие множества.
- •3. Нечеткие отношения
- •2.Нечеткие выводы
- •3.Построение Функций принадлежности.
- •Лекция 7 псевдофизические логики
- •Нечеткaя логика
- •1. Нечеткая и лингвистическая переменные.
- •2. Нечеткая и лингвистическая логика
- •Лекция 8 псевдофизические логики
- •Нечеткие высказывания. Нечеткие алгоритмы
- •1. Нечеткие высказывания
- •2. Свойства высказываний.
- •3. Правила преобразования высказываний.
- •4. Понятие нечеткого оператора и алгоритма
- •5. Выполнение нечетких алгоритмов.
- •Лекция 9 продукционные модели представления знаний
- •3. Классификация ядер продукции.
- •4. Методы поиска решений
- •5. Методы логического вывода. Дедуктивный вывод
- •3. Повышение эффективности поиска
- •Лекция 10 методы представления и обработки нечетких знаний в продукционных системах
- •1. Представление экспертной информации
- •2. Представление экспертной информации в виде
- •Лекция 11 методы представления и обработки нечетких знаний в продукционных системах
- •1. Нечеткий вывод на основе дедуктивного логического вывода
- •2. Нечеткий вывод на основе индуктивного логического вывода
- •Лекция 12 сетевые семантические модели представления знаний
- •1. Основные понятия семантических сетей
- •Лекция 13 сетевые семантические модели представления знаний
- •4. Модели семантических сетей. Активные семантические сети (м-сети).
- •Лекция 14 фреймы и объекты
- •Лекция 15 сценарии
- •1. Основные определения
- •3. Каузальные сценарии
- •Лекция 16 модели обучения
- •1. Неформальные модели
- •2. Формальные модели
- •3. Обучение по примерам
- •Лекции 17 обучение по примерам
- •1. Итеративные алгоритмы обучения
- •2. Спецификация задач обучения по примерам
- •Библиографический список
Лекция 5 логические модели представления знаний
План лекции
1. Предварительные замечания
2. Логическая модель представления знаний
1. Предварительные замечания
Все многообразие моделей представления знаний можно разбить на 2 типа: логические и эвристические. В основе логических моделей представления знаний лежит понятие формальной системы (теории).
Примерами формальных теорий могут служить исчисление предикатов (см., например, [Мендельсон, 1971; Попов и Фирдман, 1976]) и любая конкретная система продукций ([Мальцев, 1965]). В логических моделях представления знаний нашли применение исчисления предикатов (обычно первого порядка), 0coбенно активизировалось использование исчисления предикатов после создания мощных процедур поиска вывода: метода резолюций [Робинсон, 1965; Попов и Фирдман, 1976] и обратного метода [Маслов, 1964]. Эти методы были обогащены эвристическими процедурами, которые существенно повысили эффективность вывода [Чэнг и Ли, 1973; Попов и Фирдман, 1976, гл. 5; Ефимов, 1982]. Перечисленные методы являются системами дедуктивного типа, т.е. в них используется модель получения вывода из заданной системы посылок с помощью фиксированной системы правил вывода.
Дальнейшим развитием предикатных систем являются системы индуктивного типа, в которых правила вывода порождаются системой на основе обработки конечного числа обучающих примеров (для обзора работ данного направления см., например, [Финн, 1984]). Особое место среди логик, используемых для представления знаний, занимают логики отношений, получившие название псевдофизических [Поспелов Д. 1975, 1981 , 1984] . Особенность этих логик состоит в использовании в правилах вывода конкретных знаний о свойствах отношений внутри предметных областей. Псевдофизические логики и индуктивные модели не получили пока широкого применения в экспертных системах.
В логических моделях представления знаний отношения, существующие между отдельными единицами знаний, выражаются только с помощью тех небогатых средств, которые предоставляются синтаксическими правилами используемой формальной системы. В отличие от формальных моделей эвристические модели имеют разнообразный набор средств, передающих специфические особенности той или иной проблемной области. Именно поэтому эвристические модели превосходят логические как по возможности адекватно представить проблемную область, так и по эффективности используемых правил вывода. К эвристическим моделям, используемым в экспертных системах, можно отнести сетевые, фреймовые и продукционные модели. Следует отметить, что продукционные модели для представления знаний в экспертных системах отличаются от формальных продукционных систем [Мальцев, 1965] как тем, что они используют более богатые правила, так и тем, что содержат эвристическую информацию о специфике проблемной области, выражаемую часто в виде семантических структур.Далее рассмотрим описание способов представления знаний в логической модели (на примере языка исчисления предикатов) и в эвристической модели (на примере семантических сетей, фреймов и продукционных систем).
