
- •Основные понятия и методология проектирования сложных объектов и систем
- •1. Понятие проектирования
- •3.1 Информационные системы и их классификация
- •3.2 Основы построения систем автоматизированного проектирования (сапр)
- •3.2.1 Системный подход. Основные понятия и определения
- •Математические модели объектов проектирования
- •Интегрированные системы автоматизированного проектирования конструкций и технологических процессов разного назначения
- •1. Типы сапр в области машиностроения
- •2. Основные функции cad-систем
- •3. Основные функции cae-систем
- •4. Основные функции cam-систем
- •5. Графическое ядро
- •6. Прототипирование
- •7. Структура cad/cam систем
- •8. Машиностроительные сапр верхнего уровня
- •Анализ, верификация и оптимизация проектных решений средствами сапр
- •17.1. Основные задачи многообъектного технологического проектирования
- •17.2. Структурный синтез при проектировании технологических процессов
- •17.1. Основные задачи многообъектного технологического проектирования
- •17.2. Структурный синтез при проектировании технологических процессов
Математические модели объектов проектирования
Математическое описание проектируемого объекта называют математической моделью. Математическая модель — это совокупность математических элементов (чисел, переменных, векторов, множеств) и отношений между ними, которые с требуемой для проектирования точностью описывают свойства проектируемого объекта. На каждом этапе проектирования используется свое математическое описание проектируемого объекта, сложность которого должна быть согласована с возможностями анализа на ЭВМ, что приводит к необходимости иметь для одного объекта несколько моделей различного уровня сложности [38, 33, 55, 94].
В общей теории математического моделирования математическую модель любого объекта характеризуют внутренними, внешними, выходными параметрами ифазовыми переменными. Внутренние параметры модели определяются характеристиками компонентов, входящих в проектируемый объект, например номиналы элементов принципиальной схемы. Если проектируемый объект содержит п элементарных компонентов, то и его математическая модель будет определяться параметрами, которые образуют вектор внутренних параметров W = |w1...wn|T. Каждый из параметров wi, в свою очередь, может быть функцией, вектором или еще более сложным математическим функционалом в зависимости от объекта проектирования.
Выходные параметры модели — это показатели, характеризующие функциональные, эксплуатационные, конструкторско-технологические, экономические и другие характеристики проектируемого объекта. К таким показателям могут относиться коэффициенты передачи, масса и габариты проектируемого объекта, надежность, стоимость и т.п. Понятия внутренних и выходных параметров инвариантны, при моделировании на более сложном уровне выходные параметрымогут стать внутренними и наоборот. Например, сопротивление резистора является внутренним параметром при моделировании усилительного устройства, компонентом которого он является, но это же сопротивление будет выходным параметром при моделировании самого резистора, что требуется при пленочном его исполнении. Вектор выходных параметров модели будем обозначать
Внешние параметры модели — это характеристики внешней по отношению к проектируемому объекту среды, а также рабочие управляющие воздействия. Вектор внешних параметров в общем случае содержит множество самых различных составляющих. К его составляющим с полным правом можно отнести все, что говорилось ранее о составляющих вектора внутренних параметров. Будем обозначать его
Уравнения математической модели могут связывать некоторые физические характеристики компонентов, которые полностью характеризуют состояние объекта, но не являются выходными иливнутренними параметрами модели (например, токи и напряжения в радиоэлектронных устройствах, внутренними параметрами которых являются номиналы элементов электрических схем, авыходными параметрами — выходная мощность, коэффициент передачи). Такие характеристики называют фазовыми переменными. Минимальный по размерности вектор фазовых переменных v = |v1...vr|T, полностью характеризующий работу объекта проектирования, называют базисным вектором. Например, при составлении уравнений математической модели радиоэлектронных устройств в качестве базисного вектора V можно использовать вектор узловых потенциалов либо вектор напряжений на конденсаторах и токов в индуктивностях — переменные состояния. Использование вектора фазовых переменных позволяет упростить алгоритмическую реализацию программ, составляющих уравнения математической модели устройства.
В общем случае выходные параметры F представляются операторами от векторов V,W,Q и могут быть определены из решения системы уравнений математической модели устройства. С учетом вышесказанного математическая модель любого радиотехнического объекта может быть представлена в виде следующих систем уравнений:
|
(14.1) |
|
|
(14.2) |
где
и
—
операторы, определяющие вид систем
уравнений модели.
Система уравнений (14.1) может представлять собой систему линейных алгебраических уравнений, нелинейных уравнений различного вида, дифференциальных в полных или частных производных, и является собственно математической моделью проектируемого объекта. В результате решения системы (14.1) определяются действующие в устройстве фазовые переменные V. Система уравнений (14.2) определяет зависимость выходных параметров объекта от фазовых переменных V.
В частных случаях составляющие вектора V могут являться внутренними или выходными параметрами объекта, и тогда системы уравнений (14.1) и (14.2) упрощаются.
Часто моделированием называют лишь составление системы (14.1). Решение уравнений (14.1) и отыскание вектора F с помощью уравнения (14.2) называют анализом математической модели.
На каждом уровне моделирования различают математические модели проектируемого радиотехнического объекта и компонентов, из которых состоит объект. Математические модели компонентов представляют собой системы уравнений, которые устанавливают связь между фазовыми переменными, внутренними и внешними параметрами, относящимися к данному компоненту. Эти уравнения называют компонентными, а соответствующую модель — компонентной.
Математическую модель объекта проектирования, представляющего объединение компонентов, получают на основе математических моделей компонентов, входящих в объект. Объединениекомпонентных уравнений в математическую модель объекта осуществляется на основе фундаментальных физических законов, выражающих условия непрерывности и равновесия фазовых переменных, например законов Кирхгофа. Уравнения, описывающие эти законы, называют топологическими ; они отражают связи между компонентами в устройстве. Совокупность компонентныхи топологических уравнений для проектируемого объекта и образует систему (14.1), являющуюся математической моделью объекта.
Исходя из задач конкретного этапа проектирования, математическая модель проектируемого объекта должна отвечать самым различным требованиям:
отражать с требуемой точностью зависимость выходных параметров объекта от его внутренних и внешних параметров в широком диапазоне их изменения;
иметь однозначное соответствие физическим процессам в объекте;
включать необходимые аппроксимации и упрощения, которые позволяют реализовать ее программно на ЭВМ с различными возможностями;
иметь большую универсальность, т. е. быть применимой к моделированию многочисленной группы однотипных устройств;
быть экономичной с точки зрения затрат машинных ресурсов и т. п.
Эти требования в своем большинстве являются противоречивыми, и удачное компромиссное удовлетворение этих требований в одних задачах может оказаться далеким от оптимальности в других. По этой причине для одного и того же компонента или устройства часто приходится иметь не одну, а несколько моделей. В связи с этим классификация моделей должна выполняться по множеству признаков, чтобы описать все возможные случаи.
По уровню сложности различают полные модели и макромодели. Полные модели объекта проектирования получаются путем непосредственного объединения компонентных моделей в общую систему уравнений. Макромодели представляют собой упрощенные математические модели, аппроксимирующие полные.
В свою очередь, макромодели делят на две группы: факторные и фазовые модели.
Факторные модели предназначены для использования на последующих этапах проектирования.
Фазовые макромодели предназначены для использования на том же этапе проектирования, на котором их получают, для сокращения размерности решаемой задачи.
По способу получения математические модели радиотехнических объектов делят на физические и формальные. Физические модели получают на основе изучения физических закономерностей функционирования проектируемого объекта, так что структура уравнений и параметры модели имеют ясное физическое толкование.
Формальные модели получают на основе измерения и установления связи между основными параметрами объекта в тех случаях, когда физика работы его известна недостаточно полно. Как правило, формальные модели требуют большого числа измерений и по своей природе являются локальными, справедливыми вблизи тех режимов, в которых производились измерения. Такие модели называют моделями "черного ящика".
В современных системах автоматизированного проектирования формирование системы уравнений математической модели проектируемого объекта выполняется автоматически с помощью ЭВМ. В зависимости от того, что положено в основу алгоритма формирования системы уравнений, модели радиоэлектронных объектов можно разделить на электрические, физико-топологические итехнологические.
Понятие электрической модели включает либо систему уравнений, связывающих напряжения и токи в электрической схеме, являющейся моделью объекта, либо саму электрическую схему, составленную из базовых элементов (резисторов, конденсаторов), на основе которой можно в ЭВМ получить систему уравнений, связывающих напряжения и токи в модели объекта.
В физико-топологических моделях исходными параметрами являются геометрические размеры определяющих областей проектируемого объекта и электрофизические характеристики материала, из которых они состоят. В результате решения системы уравнений этой модели поля находятся внутри и на внешних выводах устройства. Такие модели применяются при разработке полупроводниковых приборов, СВЧ-устройств и в ряде других случаев.
Технологические модели основываются на параметрах технологических процессов изготовления проектируемого объекта (температура и время диффузии, концентрация диффузанта). Выходные параметры такой модели — совокупность физико-топологических либо технологических параметров.
По способу задания внутренних и внешних параметров математические модели делят на дискретные и непрерывные.
Различают модели статические и динамические в зависимости от того, учитывают ли уравнения модели инерционности процессов в проектируемом объекте или нет. Статические модели отражают состояние объекта проектирования при неизменных внешних параметрах и не учитывают его переходные характеристики. Динамические модели дополнительно отражают переходные процессы в объекте, происходящие при изменении во времени внешних параметров.
Существуют и другие варианты классификации математических моделей элементов и узлов радиоустройств.
Программа моделирования радиотехнических и других объектов должна автоматически формировать систему уравнений математической модели из базового набора элементарных схемных элементов, компонентные уравнения для которых хранятся в библиотеке программы.
Рассмотрим основные признаки, классификации и типы математических моделей (ММ), применяемых в САПР .
По характеру отображаемых свойств объекта ММ делятся на структурные и функциональные.
Структурные ММ предназначены для отображения структурных свойств объекта. Различают структурные ММ топологические и геометрические.
В топологических ММ отображаются состав и взаимосвязи элементов. Их чаще всего применяют для описания объектов, состоящих из большого числа элементов, при решении задач привязки конструктивных элементов к определенным пространственным позициям (например, задачи компоновки оборудования, размещения деталей, трассировки соединений) или к относительным моментам времени (например, при разработке расписаний, технологических процессов). Топологические модели могут иметь форму графов, таблиц (матриц), списков и т.п.
В геометрических ММ отображаются свойства объектов, в них дополнительно к сведениям о взаимном расположении элементов содержатся сведения о форме деталей. Геометрические ММ могут выражаться совокупностью уравнений линий и поверхностей; совокупностью алгебраических соотношений, описывающих области, составляющие тело объекта; графами и списками, отображающими конструкции из типовых конструктивных элементов, и т.п. Геометрические ММ применяют при решении задач конструирования в машиностроении, приборостроении, радиоэлектронике, для оформления конструкторской документации, при задании исходных данных на разработку технологических процессов изготовления деталей. Используют несколько типов геометрических ММ.
Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или изготовлении. Обычно функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры.
По степени детализации описания в пределах каждого иерархического уровня выделяют полные ММ и макромодели.
Полная модель - эта модель, в которой фигурируют фазовые переменные, характеризующие состояния всех имеющихся межэлементных связей (т.е. состояние всех элементов проектируемого объекта).
Макромодель - ММ, в которой отображаются состояния значительно меньшего числа межэлементных связей, что соответствует описанию объекта при укрупненном выделении элементов.
По способу представления свойств объекта функциональные ММ делятся на аналитические и алгоритмические.
Аналитические ММ представляют собой явные выражения выходных параметров как функций входных и внутренних параметров.
Алгоритмические ММ выражают связи выходных параметров с параметрами внутренними и внешними в форме алгоритма.
Имитационная ММ - это алгоритмическая модель, отражающая поведение исследуемого объекта во времени при задании внешних воздействий на объект.
Математическое обеспечение компьютерного проектирования
Математическое обеспечение САПР состоит из математических моделей объектов проектирования, методов и алгоритмов выполнения проектных операций и процедур .
В математическом обеспечении САПР можно выделить специальную часть, в значительной мере отражающую специфику объекта проектирования, физические и информационные особенности его функционирования и тесно привязанную к конкретным иерархическим уровням (эта часть охватывает математические модели, методы и алгоритмы их получения, методы и алгоритмы одновариантного анализа, а также большую часть используемых алгоритмов синтеза), и инвариантную часть, включающую в себя методы и алгоритмы, слабо связанные с особенностями математических моделей и используемые на многих иерархических уровнях (это методы и алгоритмы многовариантного анализа и параметрической оптимизации) .
Свойства математического обеспечения (МО) оказывают существенное, а иногда и определяющее влияние на возможности и показатели САПР.
При выборке и разработке моделей, методов и алгоритмов необходимо учитывать требования, предъявляемые к МО в САПР. Рассмотрим основные из них .
Универсальность
Под универсальностью МО понимается его применимость к широкому классу проектируемых объектов. Одно из отличий расчетных методов в САПР от ручных расчетных методов - высокая степень универсальности. Например, в подсистеме схемотехнического проектирования САПР ИЭТ используются математические модели транзистора, справедливые для любой области работы (активной, насыщения, отсечки, инверсной активной), а методы получения и анализа моделей применимы к любой аналоговой или переключательной схеме на элементах из разрешенного списка; в подсистеме структурного проектирования САПР ЭВМ используются модели и алгоритмы, позволяющие исследовать стационарные и нестационарные процессы переработки информации при произвольных законах обслуживания в устройствах ВС и при произвольных входных потоках.
Высокая степень универсальности МО нужна для того, чтобы САПР была применима к любым или большинству объектов, проектируемых на предприятии.
Алгоритмическая надежность
Методы и алгоритмы, не имеющие строгого обоснования, называют эвристическими. Отсутствие четко сформулированных условий применимости приводит к тому, что эвристические методы могут использоваться некорректно. В результате либо вообще не будет получено решение (например, из-за отсутствия сходимости), либо оно будет далеким от истинного. Главная неприятность заключается в том, что в распоряжении инженера может не оказаться данных, позволяющих определить, корректны или нет полученные результаты. Следовательно, возможна ситуация, когда неверное решение будет использоваться в дальнейшем как правильное .
Свойство компонента МО давать при его применении в этих условиях правильные результаты называется алгоритмической надежностью. Степень универсальности характеризуется заранее оговоренными ограничениями, а алгоритмическая надежность - ограничениями, заранее не выявленными и, следовательно, не оговоренными.
Количественной оценкой алгоритмической надежности служит вероятность получения правильных результатов при соблюдении оговоренных ограничений на применение метода. Если эта вероятность равна единице или близка к ней, то говорят, что метод алгоритмически надежен .
Применение алгоритмичности ненадежных методов в САПР нежелательно, хотя и допустимо в случаях, когда неправильные результаты легко распознаются.
С проблемой алгоритмической надежности тесно связана проблема обусловленности математических моделей и задач. О плохой обусловленности говорят в тех случаях, когда малые погрешности исходных данных приводят к большим погрешностям результатов. На каждом этапе вычислений имеются свои промежуточные исходные данные и результаты, свои источники погрешностей. При плохой обусловленности погрешности могут резко возрасти, что может привести как к снижению точности, так и к росту затрат машинного времени .
Точность
Для большинства компонентов МО важным свойством является точность, определяемая по степени совпадения расчетных и истинных результатов. Алгоритмически надежные методы могут давать различную точность. И лишь в тех случаях, когда точность оказывается хуже предельно допустимых значений или решение вообще невозможно получить, говорят не о точности, а об алгоритмической надежности.
В большинстве случаев решение проектных задач характеризуется:
совместным использованием многих компонентов МО, что затрудняет определение вклада в общую погрешность каждого из компонентов;
векторным характером результатов (например, при анализе находят вектор выходных параметров, при оптимизации - координаты экстремальной точки), т.е. результатом решения является значение не отдельного параметра, а многих параметров.
В связи с этим оценка точности производится с помощью специальных вычислительных экспериментов. В этих экспериментах используются специальные задачи, называемые тестовыми. Количественная оценка погрешности результата решения тестовой задачи есть одна из норм вектора относительных погрешностей: m-норма или l-норма, где l - относительная погрешность определения j-го элемента вектора результатов; m - размерность этого вектора.
Затраты машинного времени
Универсальные модели и методы характеризуются сравнительно большим объемом вычислений, растущим с увеличением размерности задач. Поэтому при решении большинства задач в САПР затраты машинного времени Tм значительны. Обычно именно Tм являются главным ограничивающим фактором при попытках повысить сложность проектируемых на ЭВМ объектов и тщательность их исследования. Поэтому требование экономичности по Tм - одно из основных требований к МО САПР.
При использовании в САПР многопроцессорных ВС уменьшить время счета можно с помощью параллельных вычислений. В связи с этим один из показателей экономичности МО - его приспособленность к распараллеливанию вычислительного процесса.
В САПР целесообразно иметь библиотеки с наборами моделей и методов, перекрывающими потребности всех пользователей САПР.
Используемая память
Затраты памяти являются вторым после затрат машинного времени показателем экономичности МО. Они определяются длиной программы и объемом используемых массивов данных. Несмотря на значительное увеличение емкости оперативной памяти в современных ЭВМ, требование экономичности по затратам памяти остается актуальным. Это связано с тем, что в мультипрограммном режиме функционирования ЭВМ задача с запросом большого объема памяти получает более низкий приоритет и в результате время ее пребывания в системе увеличивается.
Улучшить экономичность по затратам оперативной памяти можно путем использования внешней памяти. Однако частые обмены данными между оперативной памятью и внешней могут привести к недопустимому росту Tм. Поэтому при больших объемах программ и массивов обрабатываемой информации целесообразно использовать МО, допускающее построение оверлейных программных структур и реализующее принципы диакоптической обработки информации