
- •Часть I
- •Глава 1
- •§ 1.1. Общее описание процесса
- •§ 1.2. Стадии протекания
- •§ 1.3. Основные закономерности
- •§ 1.4. Тепловые процессы на электродах
- •§ 1.5. Особенности протекания процесса в воздушной среде
- •Глава 2. Технологические показатели
- •§ 2.1. Производительность
- •§ 2.2. Точность
- •§ 2.3. Качество поверхности
- •Глава 3. Проектирование технологических процессов
- •§ 3.1. Исходная информация
- •§ 3.2. Область технологического использования электроэрозионной обработки
- •§ 3.3. Порядок проектирования
- •Глава 4. Конструкция, расчет и изготовление электрода-инструмента
- •§ 4.1. Особенности проектирования
- •§ 4.2. Материалы, применяемые для рабочей части
- •§ 4.3. Конструкция
- •§ 4.4. Изготовление
- •§ 4.5. Расчет рабочей части
- •§ 4.6. Пути снижения износа
- •§ 4.7. Особенности проектирования, расчета и изготовления копиров для станков с непрофилированным электродом
- •§ 4.8. Особенности электродов-инструментов для обратного копирования
- •Глава 5. Электроэрозионное оборудование
- •§ 5.1. Компоновка
- •§ 5.2. Генераторы импульсов
§ 1.5. Особенности протекания процесса в воздушной среде
Электроконтактную обработку и упрочнение можно выполнять в газовой (воздушной) среде. Основные закономерности процесса, рассмотренные выше для жидкой среды, справедливы и для воздуха. Тем не менее имеются некоторые особенности. Так, при электроконтактной обработке существуют три источника теплоты: а) механический, б) за счет электрического сопротивления в месте контакта электродов, и в) дуговой. Если напряжение на электродах невелико (1 ...2 В), то наибольший нагрев дает трение. При напряжении до 10 В теплота выделяется в основном за счет сопротивления в местах соприкосновения электродов. При U>10 В нагрев идет в основном за счет прерывистой дуги. Чем выше скорость вращения или перемещения электрода-инструмента, тем чаще происходят дуговые разряды и меньше их длительность.
Переход искровых разрядов в дугу оказывает влияние на физику протекания процесса обработки. После возникновения канала проводимости в межэлектродном воздушном промежутке устанавливается дуговой разряд. Причем в процессе разряда в воздухе вместо газового пузыря образуется прогретая оболочка канала. Расплавленный металл выбрасывается из межэлектродного промежутка подвижным электродом-инструментом.
Энергия импульса и его длительность оцениваются зависимостями (1.1) и (1.3). Для электроконтактной обработки используют не только постоянный, но и переменный ток. При переменном токе длительность импульса принимают равной половине периода: τИ = 0,5τО.
Длительное время горения дуги усложняет тепловые расчеты, здесь необходимо определять теплообмен с учетом перемещения источника теплоты за время импульса. Условия подвода теплоты для заготовки и подвижного электрода-инструмента будут иметь существенные различия. Действительно, в период протекания дуги электрод-инструмент перемещается и источник теплоты будет воздействовать в течение одного импульса на разные его участки. Чем больше скорость электрода-инструмента, тем на большую площадь распределяется тепловой поток, меньше становится его средняя плотность и, следовательно, меньше износ.
При электроэрозионном упрочнении и легировании материал с анода (инструмента) переносится на катод (заготовку). Жидкий металл обоих электродов взаимодействует, образуя новые сплавы, попадающие на поверхность заготовки. Образуются нитриды металлов, а при работе графитовыми электродами-инструментами формируются карбиды, придающие поверхности высокую износостойкость. Происходит также диффузия материала электрода-инструмента в катод, измельчение зерен в приповерхностном слое. Образуется прочно связанный с заготовкой слой металла, толщина которого составляет десятые доли миллиметра. К особенностям процесса электроискрового легирования следует отнести необходимость периодического контакта электродов с помощью вибратора, колеблющегося с частотой 50 Гц. Время касания 0,6... 2 мс. Основной выброс металла происходит во время контакта электродов. Длительность импульса τИ = 50 ... 150 мкс.
Толщина и свойства слоя металла, полученного в процессе легирования, зависят от энергии импульса. Чем мощнее импульс, тем толще слой, но выше его шероховатость и ниже сплошность.