
- •1.Биология как часть естествознания
- •2.Понятие о процессе познания и его отдельных уровнях
- •3.Научные методы разных уровней познания
- •4.Биология,предмет изучения и задачи.....
- •5.Общая биология и её задачи
- •6.Биология,основа медицины, сельского хозяйства,и других отраслей производства связанных с живыми организмами.
- •7.Основные признаки живой материи
- •8.Основные этапы развития биологических наук.
- •9.Подготовительный (натурфилософский) период становления биологии
- •10.Второй подготовительный период развития биологии ( раннее средневековье)
- •11.Развитие биологии в период механического и метафизического естествознания
- •12.Стихийно диалектический период развития билогии
- •13. Первый этап периода новейшей революции в биологии (втор пол 20-21 век)
- •13. Первый этап периода новейшей революции в естествознании и биологии (конец 19 в – начало 20 в)
- •14. Второй этап периода новейшей революции в естествознании и биологии ( вторая половина 20 в – 21 в)
- •15.Определение понятия жизнь
- •16.Происхождение жизни на земле
- •17.Биохимическая теория происхождения жизни на земле
- •18.Концепции структурных уровней организации живой материи
- •19.Вирусы как неклеточная форма жизни:строение ,систематика
- •20.Проникновение вирусов в клетку, размножение вирусов
- •21.Вирусы-ифекционные агенты
- •22.Онкогенные вирусы
- •23.Вирусы изменение генетической информации организма
- •24.Доядерные организмы.Структурная организация прокариотических клеток
- •25.Питание,размножение и значение бактерий
- •26.Структурная организация эукариотических клеток.
- •27.Химическая организация эукариотических клеток
- •28.Неорганические вещества входящие в состав клетки.
- •29.Роль и функции отдельных химических элементов
- •30. См 28 вопрос
- •31.Основные органические вещества входящие в состав клетки
- •32 И 33 смотреть в 31.
- •70.Генотип как сложная система взаимодействующих генов
- •69. Современные представления о гене
- •68. Структурно - функциональные уровни организации наследственногоматериала
- •67. Хромосомная теория. Закон сцепленного наследования Моргана
- •66. Наследственность. Законы наследственности открытые Менделем. Цитологические основы законов Менделя
- •34.Пространственная структура белков.Понятие о фолдинге белков.Динамическая подвижность белков.
- •35.Функции белков.Понятие о денатурации белков.
- •36.Особенности пространственной структуры днк. Модели днк.
- •37.Самоудвоение днк.Образование двухроматидных хромасом.
- •38.Механизм репликации смотреть в 37
- •39.Рнк,виды,структура и роль в клетке
- •40.Механизм транскрипции.
- •41.Трансляция, активация и инициация трансляции.
- •42.Трансляция.Элонгация и терминация
- •43.Генетический код,его свойства.
- •44.Энергетический обмен. Его этапы и значение.Атф универсальный источник энергии.
- •45.Пластический обмен.Примеры,значение,взаимосвязь с энергетичским обменом.
- •46.Мембрана как универсальный компонент субклеточных и клеточных систем.Структура биомембран.
- •47.Современная модель клеточной мембраны.
- •48.Динамика структурных элеметнов биомембран:латеральная диффузия,трасмембранные переходы.
- •49.Функции мембран.
- •50.Мембранные белки, их структура свойства и особенности.
- •55. Активный транспорт. Ионные насосы, молекулярный механизм их работы
- •59. Мембранные рецепторы, их типы
- •58. Типы клеточных рецепторов. Закономерное взаимодействие лигандов с рецепторами. Свойство рецепторов
- •57. Сопряженный транспорт. Вторично активный транспорт веществ
- •56. Транспорт высокомолекулярных веществ. Эндо и экзоцитоз
- •61. Механизм передачи сигнала от гидрофобных гормонов
- •60. Схема передачи сигнала в клетку. Первичные и вторичные мессенджеры
- •62. Механизм передачи сигнала от гидрофильных гормонов
- •63. Клеточный цикл его периоды
- •64. Митоз и мейоз, фазы, значения. Место мейоза в жизненном цикле организма
- •65. Основные понятия генетики
- •66. Наследственность, законы наследственности менделя, цитологические основы законов менделя.
- •67. Хромосомная теория. Закон сцепленного наследования моргана.
- •68. Структурно-функциональные уровни организации наследственного материала.
47.Современная модель клеточной мембраны.
БУТЕРБРОДНАЯ МОДЕЛЬ (белки – липиды – белки) В 1935г. английские ученые Даниэли и Даусон высказали идею о послойном расположении в мембране молекул белков (темные слои в электронном микроскопе), которые залегают снаружи, и молекул липидов (светлый слой) – внутри. Длительное время существовало представление о едином трехслойном строении всех биологических мембран. При детальном изучении мембраны с помощью электронного микроскопа оказалось, что светлый слой на самом деле представлен двумя слоями фосфолипидов – это билипидный слой, причем водорастворимые его участки – гидрофильные головки направлены к белковому слою, а нерастворимые (остатки жирных кислот) – гидрофобные хвосты обращены друг к другу.
Однако уже с середины 60-х годов начали накапливаться факты против унитарной «бутербродной» модели. В частности, по одним данным, не все мембраны имели четкую трехслойную структуру при электронно-микроскопическом исследовании; по другим – значительная часть мембранных белков имела глобулярную структуру, а не ламеллярную, как в постулируемой модели. Наконец, среди многочисленных моделей мембран, предложенных в середине 60-х годов, начали выделяться те, в которых доказывалось наличие гидрофобно-гидрофильных взаимодействий не только между липидными молекулами, но и между липидами и белками. ЖИДКОСТНО-МОЗАИЧНАЯ МОДЕЛЬ В 1972г. Сингер и Николсон описали модель мембраны, которая получила широкое признание. Согласно этой модели молекулы белков не образуют сплошного слоя, а погружены в биполярный липидный слой на разную глубину в виде мозаики. Глобулы белковых молекул, подобно айсбергам, погружены в «океан»
липидов: одни находятся на поверхности билипидного слоя – периферические белки, другие погружаются в него наполовину – полуинтегральные белки, третьи – интегральные белки – пронизывают его насквозь, формируя гидрофильные поры. Периферические белки, находясь на поверхности билипидного слоя, связаны с головками липидных молекул электростатическими взаимодействиями. Но они никогда не образуют сплошного слоя и, по сути дела, не являются белками собственно мембраны, а, скорее, связывают ее с надмембранной или субмембранной системой поверхностного аппарата клетки. Основную роль в организации собственно мембраны играют интегральные и полуинтегральные (трансмембранные) белки, имеющие глобулярную структуру и связанные с липидной фазой гидрофильно-гидрофобными взаимодействиями. Молекулы белков, как и липиды, обладают амфипатричностью и своими гидрофобными участками взаимодействуют с гидрофобными хвостами билипидного слоя, а гидрофильные участки обращены к водной среде и образуют с водой водородные связи. БЕЛКОВО-КРИСТАЛЛИЧЕСКАЯ МОДЕЛЬ (модель липопротеинового коврика) Мембраны образованы переплетением липидных и белковых молекул, объединяющихся между собой на основе гидрофильно- гидрофобных взаимодействий.
Белковые молекулы, как штифты, пронизывают слой липидов и выполняют в составе мембраны функцию каркаса. После обработки мембраны жирорастворимыми веществами белковый каркас сохраняется, что доказывает взаимосвязь между молекулами белков в мембране. По-видимому, эта модель реализуется лишь в отдельных специальных участках некоторых мембран, где требуется жесткая структура и тесные стабильные взаимоотношения между липидами и белками (например, в области расположения фермента Na-К –АТФ-азы). Самой универсальной моделью, отвечающей термодинамическим принципам (принципам гидрофильно-гидрофобных взаимодействий), морфо-биохимическим и экспериментально-цитологическим данным, является жидкостно-мозаичная модель. Однако все три модели мембран не исключают друг друга и могут встречаться в разных участках одной и той же мембраны в зависимости от функциональных особенностей данного участка.