
- •1.Биология как часть естествознания
- •2.Понятие о процессе познания и его отдельных уровнях
- •3.Научные методы разных уровней познания
- •4.Биология,предмет изучения и задачи.....
- •5.Общая биология и её задачи
- •6.Биология,основа медицины, сельского хозяйства,и других отраслей производства связанных с живыми организмами.
- •7.Основные признаки живой материи
- •8.Основные этапы развития биологических наук.
- •9.Подготовительный (натурфилософский) период становления биологии
- •10.Второй подготовительный период развития биологии ( раннее средневековье)
- •11.Развитие биологии в период механического и метафизического естествознания
- •12.Стихийно диалектический период развития билогии
- •13. Первый этап периода новейшей революции в биологии (втор пол 20-21 век)
- •13. Первый этап периода новейшей революции в естествознании и биологии (конец 19 в – начало 20 в)
- •14. Второй этап периода новейшей революции в естествознании и биологии ( вторая половина 20 в – 21 в)
- •15.Определение понятия жизнь
- •16.Происхождение жизни на земле
- •17.Биохимическая теория происхождения жизни на земле
- •18.Концепции структурных уровней организации живой материи
- •19.Вирусы как неклеточная форма жизни:строение ,систематика
- •20.Проникновение вирусов в клетку, размножение вирусов
- •21.Вирусы-ифекционные агенты
- •22.Онкогенные вирусы
- •23.Вирусы изменение генетической информации организма
- •24.Доядерные организмы.Структурная организация прокариотических клеток
- •25.Питание,размножение и значение бактерий
- •26.Структурная организация эукариотических клеток.
- •27.Химическая организация эукариотических клеток
- •28.Неорганические вещества входящие в состав клетки.
- •29.Роль и функции отдельных химических элементов
- •30. См 28 вопрос
- •31.Основные органические вещества входящие в состав клетки
- •32 И 33 смотреть в 31.
- •70.Генотип как сложная система взаимодействующих генов
- •69. Современные представления о гене
- •68. Структурно - функциональные уровни организации наследственногоматериала
- •67. Хромосомная теория. Закон сцепленного наследования Моргана
- •66. Наследственность. Законы наследственности открытые Менделем. Цитологические основы законов Менделя
- •34.Пространственная структура белков.Понятие о фолдинге белков.Динамическая подвижность белков.
- •35.Функции белков.Понятие о денатурации белков.
- •36.Особенности пространственной структуры днк. Модели днк.
- •37.Самоудвоение днк.Образование двухроматидных хромасом.
- •38.Механизм репликации смотреть в 37
- •39.Рнк,виды,структура и роль в клетке
- •40.Механизм транскрипции.
- •41.Трансляция, активация и инициация трансляции.
- •42.Трансляция.Элонгация и терминация
- •43.Генетический код,его свойства.
- •44.Энергетический обмен. Его этапы и значение.Атф универсальный источник энергии.
- •45.Пластический обмен.Примеры,значение,взаимосвязь с энергетичским обменом.
- •46.Мембрана как универсальный компонент субклеточных и клеточных систем.Структура биомембран.
- •47.Современная модель клеточной мембраны.
- •48.Динамика структурных элеметнов биомембран:латеральная диффузия,трасмембранные переходы.
- •49.Функции мембран.
- •50.Мембранные белки, их структура свойства и особенности.
- •55. Активный транспорт. Ионные насосы, молекулярный механизм их работы
- •59. Мембранные рецепторы, их типы
- •58. Типы клеточных рецепторов. Закономерное взаимодействие лигандов с рецепторами. Свойство рецепторов
- •57. Сопряженный транспорт. Вторично активный транспорт веществ
- •56. Транспорт высокомолекулярных веществ. Эндо и экзоцитоз
- •61. Механизм передачи сигнала от гидрофобных гормонов
- •60. Схема передачи сигнала в клетку. Первичные и вторичные мессенджеры
- •62. Механизм передачи сигнала от гидрофильных гормонов
- •63. Клеточный цикл его периоды
- •64. Митоз и мейоз, фазы, значения. Место мейоза в жизненном цикле организма
- •65. Основные понятия генетики
- •66. Наследственность, законы наследственности менделя, цитологические основы законов менделя.
- •67. Хромосомная теория. Закон сцепленного наследования моргана.
- •68. Структурно-функциональные уровни организации наследственного материала.
32 И 33 смотреть в 31.
70.Генотип как сложная система взаимодействующих генов
На основании знакомства с примерами наследования признаков при моно- и дигибридном скрещивании может сложиться впечатление, что генотип организма слагается из суммы отдельных, независимо действующих генов, каждый из которых определяет развитие только своего признака или свойства. Такое представление о прямой и однозначной связи гена с признаком чаще всего не соответствует действительности. На самом деле существует огромное количество признаков и свойств живых организмов, которые определяются двумя и более парами генов, и наоборот, один ген часто контролирует многие признаки. Кроме того, действие гена может быть изменено соседством других генов и условиями внешней среды. Таким образом, в онтогенезе действуют не отдельные гены, а весь генотип как целостная система со сложными связями и взаимодействиями между ее компонентами. Эта система динамична: появление в результате мутаций новых аллелей или генов, формирование новых хромосом и даже новых геномов приводит к заметному изменению генотипа во времени.
Характер проявления действия гена в составе генотипа как системы может изменяться в различных ситуациях и под влиянием различных факторов. В этом можно легко убедится, если рассмотреть свойства генов и особенности их проявления в признаках:
Ген дискретен в своем действии, т. е. обособлен в своей активности от других генов.
Ген специфичен в своем проявлении, т. е. отвечает за строго определенный признак или свойство организма.
Ген может действовать градуально, т. е. усиливать степень проявления признака при увеличении числа доминантных аллелей (дозы гена).
Один ген может влиять на развитие разных признаков — это множественное, или плейотропное, действие гена.
Разные гены могут оказывать одинаковое действие на развитие одного и того же признака (часто количественных признаков) — это множественные гены, или полигены.
Ген может взаимодействовать с другими генами, что приводит к появлению новых признаков. Такое взаимодействие осуществляется опосредованно — через синтезированные под их контролем продукты своих реакций.
Действие гена может быть модифицировано изменением его местоположения в хромосоме (эффект положения) или воздействием различных факторов внешней среды.
69. Современные представления о гене
В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал «элементами». Позднее их стали называть генами. Термин «ген» был впервые применен для обозначения наследственно-обусловленного признака Иогансеном в 1911 г.; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому. Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена: ген как единица рекомбинации. На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген – это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма; ген как единица мутирования. В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген – это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию. ген как единица функции. Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта Итак, подобно тому, что в физике элементарными единицами вещества являются атомы, в генетике элементарными дискретными единицами наследственности и изменчивости являются гены. Хромосома любого организма, будь то бактерия или человек, содержит длинную непрерывную цепь ДНК, вдоль которой расположено множество генов. Установление количества генов, их точного местоположения на хромосоме и детальной внутренней структуры, включая знание полной нуклеотидной последовательности, - задача исключительной сложности и важности. Ученые успешно решают ее, применяя целый комплекс молекулярных, генетических, цитологических, иммуногенетических и других методов.