
- •6. В каком случае разностные уравнения можно назвать дискретной моделью непрерывной системы, описываемой дифференциальными уравнениями ?
- •11. Что такое передаточные нули многомерной системы?
- •19. Как связаны полюса некоторой непрерывной системы с полюсами ее дискретной модели?
- •20. Какую подстановку необходимо осуществить в передаточной функции w(z) дискретной системы для перехода к частотной передаточной функции (к частотным характеристикам)?
- •26. Какое из приведенных условий является необходимым и достаточным для асимптотической устойчивости дискретной системы вида ?
- •33. Какое расположение корней характеристического полинома системы второго порядка соответствует состоянию равновесия типа «седло»?
- •35. Что такое скользящий режим?
- •36. Что означает термин «абсолютная устойчивость»?
- •38. При каком задающем воздействии ошибка слежения постоянна, если следящая система по задающему входу имеет астатизм 1-го порядка?
- •40. Какие критерии качества регулирования используются в задачах модального управления?
Тестовые вопросы по дисциплине «Теория автоматического управления»
+1. Какими уравнениями описываются дискретные системы?
1. Обыкновенными дифференциальными.
2. Дифференциальными уравнениями в частных производных.
3. Разностными.
4. Алгебраическими.
5. Дифференциальными уравнениями с запаздывающим аргументом.
+2. Что такое статическая характеристика динамической системы?
1. Зависимость выходной переменной от времени.
2. Зависимость выхода от входа в установившемся режиме.
3. Зависимость выхода от входа в переходном режиме.
4. Зависимость амплитуды гармонических колебаний выхода от частоты этих колебаний на входе.
+3. Как производится операция линеаризации нелинейных уравнений?
1. Отбрасыванием нелинейных членов уравнения.
2. Разложением в ряд Тейлора нелинейных составляющих и отбрасыванием членов разложения высших порядков малости.
3. Заменой переменных и эквивалентными преобразованиями.
4. Путем декомпозиции всей системы уравнений на линейную и нелинейную системы.
+4. Что такое уравнения возмущенного движения?
1. Уравнения, описывающие поведение системы при наличии внешних возмущений.
2. Уравнения с изменяющимися коэффициентами.
3. Уравнения, описывающие поведение системы в отклонениях от некоторого режима.
4. Уравнения, разделенные на «быструю» и «медленную» составляющие.
+5. При описании
динамической системы в форме Коши (
,
)
выбор переменных состояния до некоторой
степени произволен. Какие из характеристик,
представляющих данную систему, зависят
от выбора этих переменных?
1. Характеристический полином.
2. Статическая характеристика.
3. Матрицы А, В, С системы.
4. Передаточная матрица.
5. Весовая матрица.
6. В каком случае разностные уравнения можно назвать дискретной моделью непрерывной системы, описываемой дифференциальными уравнениями ?
1. Совпадают характеристические полиномы.
2. Совпадают матрицы коэффициентов.
3. При
,
где h – период
квантования, имеют место:
.
4. Совпадают передаточные матрицы.
7. Как определить
характеристический полином
многомерной системы, записанной в форме
вход-выход:
.
1.
.
3.
.
2.
.
4.
.
+8. Что такое нули передаточной функции односвязной системы?
1. Корни ее знаменателя.
2. Корни ее числителя.
3. Корни полинома, образованного суммой числителя и знаменателя.
4. Корни разности полиномов знаменателя и числителя.
+9. Что такое полюса передаточной функции?
1. Корни ее знаменателя.
2. Корни ее числителя.
3. Корни полинома, образованного суммой числителя и знаменателя.
4. Корни разности полиномов знаменателя и числителя.
+10. Как определить
характеристический полином замкнутой
системы
по передаточной функции разомкнутой,
если
?
1.
.
3.
.
2.
.
4.
.
11. Что такое передаточные нули многомерной системы?
1. Корни числителей элементов передаточной матрицы.
2. Корни знаменателей элементов передаточной матрицы.
3. Значение комплексной переменной s, которое понижает ранг передаточной матрицы.
4. Значение комплексной переменной s, которое повышает ранг передаточной матрицы.
+12. Какие из перечисленных значений не являются полюсами динамической системы?
1. Корни ее характеристического полинома.
2. Корни числителя передаточной функции.
3. Корни знаменателя передаточной функции.
4. Собственные значения матрицы при переменных состояния векторного дифференциального уравнения в форме Коши.
+13. Какое из представленных определений АЧХ является неправильным?
1. Зависимость амплитуды гармонического сигнала на выходе системы от частоты этого сигнала.
2. Зависимость модуля передаточной функции системы от частоты.
3. Зависимость отношения амплитуд гармонических колебаний на выходе и входе системы от частоты этих колебаний;
4. Зависимость динамического коэффициента передачи системы от частоты колебаний на входе.
+14. Что такое фазо-частотная характеристика?
1. Зависимость фазы гармонических колебаний на выходе системы от частоты этих колебаний.
2. Зависимость разности фаз гармонических колебаний на выходе и входе системы от частоты.
3. Зависимость отношения фазы гармонических колебаний на выходе к фазе на входе от частоты.
4. Зависимость отношения фазы гармонических колебаний на входе системы к фазе на ее выходе от частоты этих колебаний.
+15. Как аналитически определяется АЧХ односвязной системы?
1. Вещественная часть частотной передаточной функции.
2. Мнимая часть частотной передаточной функции.
3. Модуль частотной передаточной функции.
4. Аргумент частотной передаточной функции.
+16. Как аналитически определяется ФЧХ односвязной системы?
1. Вещественная часть частотной передаточной функции.
2. Мнимая часть частотной передаточной функции.
3. Модуль частотной передаточной функции.
4. Аргумент частотной передаточной функции.
+17. Как аналитически
определить весовую функцию
односвязной динамической системы через
ее передаточную функцию
?
1.
.
3.
.
2.
.
4.
.
(
– прямое и обратное преобразования
Лапласа)
+18. Как аналитически
определить переходную функцию
односвязной динамической системы через
ее передаточную функцию
?
1.
.
3.
.
2.
.
4.
.
( – прямое и обратное преобразования Лапласа)