
- •3.3 Технологический расчет основных аппаратов и подбор вспомогательного оборудования
- •3.3.1 Технологический расчет
- •3.3.1.1 Теплотехнический расчет теплообменных аппаратов
- •3.3.1.1.1 Тепловые балансы теплообменных аппаратов
- •3.3.1.1.2 Средняя разность температур теплоносителей
- •3.3.1.1.3 Коэффициенты теплоотдачи и теплопередачи
- •3.3.1.1.4 Теплопередача в поверхностных теплообменниках
- •3.3.1.1.5 Последовательность расчета и подбора кожухотрубчатого теплообменника
- •3.3.1.1.6 Гидравлический расчет кожухотрубчатых теплообменных аппаратов
- •3.3.1.1.6.1 Расчет потери давления в трубном пространстве
- •3.3.1.1.6.2 Расчет потери давления в межтрубном пространстве
- •3.3.1.2 Технологический расчет массообменных процессов
- •3.3.1.2.1 Материальный баланс
- •3.3.1.2.2 Тепловой баланс
- •3.3.1.2.3 Определение основных размеров ректификационных колонн
- •3.3.1.2.3.1 Расчет диаметра колонны
- •3.3.1.2.3.2 Расчет высоты колонны
- •3.3.1.2.3.3 Расчет штуцеров
- •3.3.1.2.4 Расчет гидравлического сопротивления тарелок
- •3.3.1.2.5 Подбор вспомогательного оборудования
- •Подбор конденсатора (конденсатора-холодильника)
- •Список использованных источников
- •Приложение к разделу 3.3
- •3.3 Технологический расчет основных аппаратов и подбор вспомогательного оборудования
- •3.3. 1 Технологический расчет
- •3.3. 1.1 Теплотехнический расчет теплообменных аппаратов
3.3.1.1.4 Теплопередача в поверхностных теплообменниках
Количество теплоты, переданной в единицу времени от горячего теплоносителя к холодному через разделяющую их стенку поверхностью F можно определить из основного уравнения теплопередачи
Q = K.F.tср, Вт. (3.24)
Уравнение (3.24) применяется для расчета необходимой площади поверхности теплопередачи при известных значениях тепловой нагрузки теплообменного аппарата Q, средней разности температур теплоносителей tср и коэффициента теплопередачи К
,
м2 (3.25)
По рассчитанной площади поверхности теплопередачи в зависимости от назначения подбирается теплообменный аппарат по ГОСТам: 15118-79, 15119-79, 15121-79, 15120-79, 15122-79, 14245-79, 14246-79, 14247-79, 14248-79 (параметры аппаратов в соответствии с указанными ГОСТами приведены в таблицах III – VII приложения. В приложении приведены также диаметры условного прохода штуцеров (таблица VIII), число сегментных перегородок (таблица IX) и масса кожухотрубчатых теплообменных аппаратов (таблица X)). ГОСТы на теплообменные аппараты других типов приведены в [4].
3.3.1.1.5 Последовательность расчета и подбора кожухотрубчатого теплообменника
Рассмотрим последовательность расчета и подбора кожухотрубчатого теплообменного аппарата для нагрева органической жидкости от начальной t2н до конечной t2к температуры при расходе жидкости G2 (кг/с).
В качестве горячего теплоносителя выбираем насыщенный водяной пар давлением Р (МПа) при степени сухости х.
По таблице 3.4 принимаем тип аппарата, выбираем материал труб – сталь; аппарат вертикальный. Нагреваемая жидкость подается в трубы, пар – в межтрубное пространство.
По таблицам теплофизических свойств нагреваемой жидкости при t2ср = 0,5.(t2н+ t2к) определяем плотность 2 (кг/м3), теплоемкость С2 (кДж/(кг.град)), вязкость 2 (Па.с), теплопроводность 2 (Вт/(м2.град)) [1].
По таблице I приложения по давлению Р (МПа) определяем температуру насыщения пара t1н = t1к = ts и удельную теплоту конденсации r (кДж/кг).
По таблице теплофизических свойств воды на линии насыщения (таблица II приложения) при ts определяем свойства конденсата: плотность (кг/м3), теплопроводность (Вт/(м.град)), вязкость (Па.с) [1].
Расчет кожухотрубчатого аппарата проводится следующим образом:
1. определяем тепловую нагрузку аппарата
Q2 = G2 . C2 . ( t2к – t2н), кВт;
2. по уравнению теплового баланса (1.6) определяем расход насыщенного водяного пара
,
кг/с;
3. при теплообмене между теплоносителями насыщенный водяной пар конденсируется при постоянной температуре ts; поэтому схема движения теплоносителей не влияет на величину средней разности температур. tср определяем либо по уравнению (3.17), либо (3.18). Расчетная схема для определения tб и tм изображена на рисунке 3.4 d.
4. по таблице 3.6 принимаем ориентировочное значение коэффициента теплопередачи Кор с учетом вида теплоносителей и характера их движения (в данном примере – от конденсирующегося водяного пара к органической жидкости при ее вынужденном движении);
5. по уравнению (3.25) рассчитываем ориентировочную площадь поверхности нагрева
,
м2;
6. принимаем диаметр труб (202,0 мм или 252,0 мм; первая цифра обозначает наружный диаметр трубы dн, вторая – толщину стенки . Тогда внутренний диаметр трубы dвн = dн – 2., мм) и длину труб l (l = 2,0; 3,0; 4,0; 6,0 м в соответствии с ГОСТом на принятый к расчету аппарат.
7. определяем общее число труб аппаратов, шт
;
8. число труб n1 (шт) на один ход определяем из условия турбулентного режима движения жидкости (Re = 10 000 – 20 000). Например, ориентировочно принимаем Re2 ор = 15 000. Тогда
;
9. рассчитываем число ходов трубного пространства аппарата
;
10. по рассчитанным величинам Fор, n, z и выбранным размерам труб (dвн и l) в соответствии с ГОСТом подбираем аппарат с наиболее близкими параметрами: Fнорм, м2; n; z;
11. проводим проверку выбранного аппарата, определив коэффициенты теплоотдачи со стороны конденсирующегося водяного пара (1) и нагреваемой жидкости (2) по критериальным уравнениям соответствующего вида и коэффициент теплопередачи К по уравнению (3.21);
12. уточняем поверхность теплопередачи (Fрасч, м2) по уравнению
;
13. определяем запас поверхности нагрева , %
.
Если запас поверхности нагрева достаточен, то аппарат выбран правильно. В противном случае расчет повторяют, приняв другой режим движения, размеры труб и др.
При выполнении расчета (пункт 10) может оказаться, что для заданных исходных величин подходят несколько нормализованных аппаратов. В этом случае необходимо проверить возможность применения каждого из них. Сопоставление конкурентно-способных аппаратов проводят с учетом их массы (таблица X приложения) и гидравлического сопротивления.