
- •1. Технологический процесс получения электрической энергии на кэс.
- •2. Технологический процесс получения электрической энергии на тэц
- •3.Технологический процесс получения электрической энергии на гэс
- •4.Технологический процесс получения электрической энергии на аэс.
- •5.Нетрадиционные источники получения электрической энергии.
- •6.Парогазовые установки.
- •7.Газотурбинные электростанции.
- •9 Синхронные генераторы
- •10 Системы охлаждения генераторов
- •11. Системы возбуждение синхронных генераторов
- •12. Автоматическое регулирование возбуждения (арв). Форсировка возбуждения
- •13. Автоматическое гашение магнитного поля синхронных генераторов и компенсаторов
- •14 Параллельная работа генераторов
- •15 Силовые трансформаторы и автотрансформаторы
- •16 Системы охлаждения силовых трансформаторов
- •17 Особенности конструкции и режимы работы автотрансформаторов
- •18. Регулирование напряжения трансформаторов и ат
- •19 Допустимые перегрузки трансформаторов
- •20 Способы гашения дуги постоянного и переменного тока в выключателях вн.
- •21 Выключатели высокого напряжения
- •22. Разъединители
- •22.1 Разъединители для внутренней установки
- •22.2. Разъединители для наружной установки
- •23 Короткозамыкатели и отделители
- •24. Измерительные трансформаторы тока
- •25 Измерительные трансформаторы напряжения
- •26. Первичные схемы станций
- •27. Структурные схемы станций
- •28. Схема п/ст с одной секционированной сш
- •29. Схема тэц с одной секционированной сш
- •30. Схема тэц с двумя сш
- •31. Упрощенные схемы ру
- •32. Схемы с одной рабочей и обходной системами шин
- •33. Схема с двумя рабочими и обходной системами шин.
- •34. Схемы 3/2, 4/3
- •35. Схемы питания с.Н. Кэс, блочных тэц. Выбор источников питания сн.
- •36. Схемы питания с.Н. Тэц, блочных тэц. Выбор источников питания сн
- •37. Схемы питания с.Н. Пс. Выбор источников питания сн.
- •38. Требования к конструкциям ору
- •39. Зру. Требования пуэ к зру
- •40. Кру, крун. Требования пуэ к кру, крун.
- •41 Выбор выключателей
- •42 Выбор трансформаторов тока
- •43. Выбор трансформаторов напряжения
- •44. Типы проводников, применяемых на эл. Станциях и пс. Конструкция гибких токопроводов, шинных мостов, комплектных пофазно-экранированных токопроводов.
- •45. Виды, причины и последствия коротких замыканий
- •46. Назначение и порядок выполнения расчетов
- •47. Способы преобразования схем замещения.Особенности расчета токов кз в с.Н.
- •48. Способы ограничения токов кз. Реакторы.
- •49. Выбор блочных транс и транс связи на электростанц и подстанциях
- •50. Метод приведенных затрат при технико-экономическом сравнении вариантов
- •51.Виды электрической изоляции электрооборудования.
- •52. Изоляция воздушных линий электропередач
- •53. Молниезащита воздушных линий
- •54.Изоляция электрооборудования станции и подстанции.
- •55 Изоляция электрооборудования закрытых и открытых ру.
- •56. Элегазовая изоляция.
- •57. Защита от прямых ударов молнии
- •58. Защита от набегающих волн
- •59. Конструкция разрядников и опн.
11. Системы возбуждение синхронных генераторов
Обмотка ротора синхронного генератора питается постоянным током, который создает магнитный поток возбуждения. Обмотка ротора, источник постоянного тока, устройства регулирования и коммутации составляют систему возбуждения генератора.
Системы возбуждения должны:
обеспечивать надежное питание обмотки ротора в нормальных и аварийных режимах;
допускать регулирование напряжения возбуждения в достаточных пределах;
обеспечивать быстродействующее регулирование возбуждения с высокими кратностями форсирования в аварийных режимах;
осуществлять быстрое развозбуждение и в случае необходимости производить гашение поля в аварийных режимах.
В зависимости от источника питания системы возбуждения разделяются на системы независимого возбуждения и самовозбуждения.
В системе независимого возбуждения на одном валу с генератором находится возбудитель — генератор постоянного или переменного тока. В системе самовозбуждения питание обмотки возбуждения осуществляется от выводов генератора через специальные понижающие трансформаторы и выпрямительные устройства.
Для генераторов мощностью до 100 МВт в качестве возбудителя применяется генератор постоянного тока GE, соединенный с валом генератора (рис. 2.9, а). Обмотка возбуждения возбудителя LGE питается от якоря возбудителя, ток в ней регулируется реостатом RR или автоматическим регулятором возбуждения АРВ. Ток, подаваемый в обмотку возбуждения LG синхронного генератора G, определяется величиной напряжения на возбудителе. Недостатком такой системы возбуждения является невысокая надежность работы генератора постоянного тока GE из-за вибрации и тяжелых условий коммутации при высокой частоте вращения 3000 об/мин. Другим недостатком является невысокая скорость нарастания возбуждения, особенно у гидрогенераторов (V= 1 — 2 с"1).
В
системе самовозбуждения (рис. 2.9, б)
обмотка
возбуждения генератора LG
получает
питание от трансформатора ТЕ,
присоединенного
к выводам генератора, через управляемые
от АРВ вентили VS
и
от трансформаторов тока ТА
через
неуправляемые вентили VD.
Ток
вентилей VD
пропорционален
току статора, поэтому они обеспечивают
форсировку возбуждения и работу
генератора при нагрузке. Управляемые
вентили VS
подают
ток, пропорциональный напряжению
генератора, и обеспечивают регулирование
напряжения в нормальном режиме. Такая
система применяется для мощных синхронных
машин.
Широкое распространение получила система возбуждения с машинным возбудителем 50 Гц и статическими выпрямителями (с т а-тическая тиристорная система независимого возбуждения — рис. 2.10). На одном валу с генератором G находится вспомогательный синхронный генератор GE, который имеет на статоре трехфазную обмотку с отпайками, к которым присоединены две группы тиристоров: рабочая группа VD1 — на низкое напряжение возбудителя и форсировочная группа VD2 — на полное напряжение. Применение двух групп тиристоров обеспечивает потолок возбуждения до 4UfH0M и высокое быстродействие (V= 50 с-1)- Обе группы соединяются параллельно по трехфазной мостовой схеме. На рис. 2.10 для упрощения чтения схемы показаны тиристоры только в одной фазе.
Система управления тиристорами AVD2 и AVD1 питается от трансформатора ТА1 и связана с АРВ (автоматическое регулирование возбуждения). Возбудитель GE имеет обмотку возбуждения LGE, получающую питание от трансформатора ТА2 через вентили VD. В рассмотренной схеме также показаны элементы схемы автоматического гашения магнитного поля (АГП): автомат АГП, резистор R, разрядник FV и контактор КМ.
Рис. 2.11. Бесщеточная система возбуждения
Рис. 2.10. Статическая тиристорная система независимого возбуждения
К недостаткам схемы следует отнести наличие возбудителя переменного тока, который усложняет эксплуатацию, а также наличие скользящих контактов между неподвижными щетками, к которым присоединена система неподвижных тиристоров, и подвижными контактными кольцами КК, вращающимися на валу ротора.
Последний недостаток привел t к разработке бесщеточной системы возбуждения - (рис. 2.11). В качестве возбудителя GE в этой системе используется синхронный генератор 50 Гц, обмотка возбуждения которого LE расположена на неподвижном статоре, а трехфазная обмотка — на вращающемся роторе. Обмотка LE получает питание от подвозбудителя GEA через выпрямитель VDE. ; На одном валу с возбудителем на специальных дисках укреплены тиристоры VD, которые выпрямляют переменный ток возбудителя и подают его в ротор генератора по жестким шинам без i колец и щеток, так как ротор генератора, тиристоры VD и ротор возбудителя вращаются на одном валу с одинаковой скоростью. Регулирование тока возбуждения осуществляется от АРВ путем воздействия на тиристоры через импульсное устройство А и вращающийся трансформатор ТА.
Достоинством этой системы является отсутствие контактных колец и щеток, недостатком — необходимость останова генератора для переключения на резервное возбуждение или для замены тиристоров.