
- •1. Технологический процесс получения электрической энергии на кэс.
- •2. Технологический процесс получения электрической энергии на тэц
- •3.Технологический процесс получения электрической энергии на гэс
- •4.Технологический процесс получения электрической энергии на аэс.
- •5.Нетрадиционные источники получения электрической энергии.
- •6.Парогазовые установки.
- •7.Газотурбинные электростанции.
- •9 Синхронные генераторы
- •10 Системы охлаждения генераторов
- •11. Системы возбуждение синхронных генераторов
- •12. Автоматическое регулирование возбуждения (арв). Форсировка возбуждения
- •13. Автоматическое гашение магнитного поля синхронных генераторов и компенсаторов
- •14 Параллельная работа генераторов
- •15 Силовые трансформаторы и автотрансформаторы
- •16 Системы охлаждения силовых трансформаторов
- •17 Особенности конструкции и режимы работы автотрансформаторов
- •18. Регулирование напряжения трансформаторов и ат
- •19 Допустимые перегрузки трансформаторов
- •20 Способы гашения дуги постоянного и переменного тока в выключателях вн.
- •21 Выключатели высокого напряжения
- •22. Разъединители
- •22.1 Разъединители для внутренней установки
- •22.2. Разъединители для наружной установки
- •23 Короткозамыкатели и отделители
- •24. Измерительные трансформаторы тока
- •25 Измерительные трансформаторы напряжения
- •26. Первичные схемы станций
- •27. Структурные схемы станций
- •28. Схема п/ст с одной секционированной сш
- •29. Схема тэц с одной секционированной сш
- •30. Схема тэц с двумя сш
- •31. Упрощенные схемы ру
- •32. Схемы с одной рабочей и обходной системами шин
- •33. Схема с двумя рабочими и обходной системами шин.
- •34. Схемы 3/2, 4/3
- •35. Схемы питания с.Н. Кэс, блочных тэц. Выбор источников питания сн.
- •36. Схемы питания с.Н. Тэц, блочных тэц. Выбор источников питания сн
- •37. Схемы питания с.Н. Пс. Выбор источников питания сн.
- •38. Требования к конструкциям ору
- •39. Зру. Требования пуэ к зру
- •40. Кру, крун. Требования пуэ к кру, крун.
- •41 Выбор выключателей
- •42 Выбор трансформаторов тока
- •43. Выбор трансформаторов напряжения
- •44. Типы проводников, применяемых на эл. Станциях и пс. Конструкция гибких токопроводов, шинных мостов, комплектных пофазно-экранированных токопроводов.
- •45. Виды, причины и последствия коротких замыканий
- •46. Назначение и порядок выполнения расчетов
- •47. Способы преобразования схем замещения.Особенности расчета токов кз в с.Н.
- •48. Способы ограничения токов кз. Реакторы.
- •49. Выбор блочных транс и транс связи на электростанц и подстанциях
- •50. Метод приведенных затрат при технико-экономическом сравнении вариантов
- •51.Виды электрической изоляции электрооборудования.
- •52. Изоляция воздушных линий электропередач
- •53. Молниезащита воздушных линий
- •54.Изоляция электрооборудования станции и подстанции.
- •55 Изоляция электрооборудования закрытых и открытых ру.
- •56. Элегазовая изоляция.
- •57. Защита от прямых ударов молнии
- •58. Защита от набегающих волн
- •59. Конструкция разрядников и опн.
24. Измерительные трансформаторы тока
Трансформатор тока предназначен для уменьшения первичного тока до значений, наиболее удобных для измерительных приборов и реле, а также для отделения цепей измерения и защиты от первичных цепей высокого напряжения.
Трансформатор тока имеет замкнутый магнитопровод 2 (рис. 4.55, а) и две обмотки — первичную 1 и вторичную 3. Первичная обмотка включается последовательно в цепь измеряемого тока /(, ко вторичной обмотке присоединяются измерительные приборы, обтекаемые током /2.
Трансформатор тока характеризуется номинальным коэффициентом трансформации
где I1ном , I2ном — номинальные значения первичного и вторичного тока соответственно.
Значения номинального вторичного тока приняты равными 5 и 1 А.
Коэффициент трансформации трансформаторов тока не является строго постоянной величиной и может отличаться от номинального значения вследствие погрешности, обусловленной наличием тока намагничивания. Токовая погрешность определяется по выражению
Погрешность трансформатора тока зависит от его конструктивных особенностей: сечения магнитопровода, магнитной проницаемости материала магнитопровода, средней длины магнитного пути, значения I1 w1.
Погрешность трансформатора тока зависит от вторичной нагрузки (сопротивление приборов, проводов, контактов) и от кратности первичного тока по отношению к номинальному. Увеличения нагрузки и кратности тока приводят к увеличению погрешности
Рис.
4.55. Трансформатор тока:
а — принципиальная схема многовиткового трансформатора тока: / — первичная обмотка; 2 — магнитопровод; 3 — вторичная обмотка; б — принципиальная схема одновиткового трансформатора тока; в — конструкция ТПОЛ-20: 1 — вывод первичный; 2 — эпоксидная литая изоляция; 3 — выводы вторичной обмотки
Конструкции трансформаторов тока
Трансформаторы тока для внутренней установки до 35 кВ имеют литую эпоксидную изоляцию.
По типу первичной обмотки различают катушечные (на напряжение до 3 кВ включительно), одновитковые и многовитковые трансформаторы.
На большие номинальные первичные токи применяются трансформаторы тока, у которых роль первичной обмотки выполняет шина, проходящая внутри трансформатора
Эти трансформаторы представляют собой кольцеобразный эпоксидный блок с залитым в нем магнитопроводом и вторичными обмотками. Первичной обмоткой является шина токопровода.
В установках 330 кВ и более применяются каскадные трансформаторы тока ТФРМ с рымовидной обмоткой, расположенной внутри фарфорового изолятора, заполненного трансформаторным маслом.
Встроенные трансформаторы тока применяются в установках 35 кВ и более. В вводы высокого напряжения масляных выключателей и силовых трансформаторов встраиваются магнитопроводы со вторичными обмотками. Первичной обмоткой является токоведущий стержень ввода.
Оптико-электронные измерительные трансформаторы
Чем выше напряжение, тем труднее изолировать первичную обмотку ВН от вторичной, измерительной обмотки трансформаторов. Каскадные измерительные трансформаторы на 500, 750 и 1150 кВ сложны в изготовлении и дороги, поэтому взамен их разработаны принципиально новые оптико-электронные трансформаторы (ОЭТ). В них измеряемый сигнал (ток, напряжение) преобразуется в световой поток, который изменяется по определенному закону и передается в приемное устройство, расположенное на заземленном элементе. Затем световой поток преобразуется в электрический