Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Zanyatie_19-2013.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
512 Кб
Скачать

Занятие №19

ПАТОФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ. ПАТОФИЗИОЛОГИЯ ЭРИТРОЦИТОВ. ДИЗЭРИТРОПОЭТИЧЕСКИЕ АНЕМИИ. Изменения физико-химических свойств крови

Основные учебные вопросы:

  1. Причины и механизмы изменений физико-химических свойств крови (осмотического и онкотического давления, вязкости, СОЭ, качественного белкового состава) при различных заболеваниях.

  2. Патологические формы эритроцитов, патологические включения в эритроциты.

  3. Мегалобластические анемии. Анемии при недостатке витамина В12 и фолиевой кислоты, дефиците эритропоэтина и других факторов эритропоэза.

  4. Ахрестические анемии: причины, механизмы развития, клинические проявления.

  5. Анемии в результате подавления эритропоэза токсическими воздействиями, ионизирующей радиацией, аутоиммунными процессами.

  6. Апластические анемии. Этиология, патогенез, основные клинические проявления.

Вспомогательный материал.

Таблица 5. - Морфологическая характеристика основных видов анемий.

Вид анемии

Цветовой показатель (ЦП)

Диаметр эритроцита мк

Объем эритроцита (МСV),мкм3

Содержание

Hb в эритроците (МСН), пкг

Показатель RDW

Характеристика

Железо-дефицитная

менее 0,8

менее 6,5

менее 80

менее 27

высокий

Гипохромная, микроцитарная

В12-, фолиеводе-фицитная

более 1,1

более 8

более 98

33 и более

высокий

Гиперхромная, макроцитарная

Острая постгемор-рагическая

0,8 – 1,5

7,2 – 7,5

80 – 90

27 – 33

норма

Нормохромная, нормоцитарная

Гемолити-ческая

0,8 – 1,5

менее 6,5

или норма

менее 80 или норма

более 33 или норма

высокий

Нормохромная, нормоцитарная

или гиперхромная, микро(сферо)-цитарная

Апластиче-ская

0,8 – 1,5

7,2 – 7,5

80 - 90

27 - 33

норма

Нормохромная, нормоцитарная

Таблица 6. Клинико-диагностическое значение изменений индексов эритроцитов

МСV

Снижение

Микроцитарная анемия, особенно железодефицитная; некоторые гемоглобинопатии; * гемолиз in vitro или наличие обломков эритроцитов.

Повышение

Макроцитарная анемия; у новорожденных; * значительный ретикулоцитоз (свыше 50%).

МСН

Снижение

При железодефицитной анемии, некоторых гемоглобинопатиях.

Повышение

При В12-, фолиево-дефицитных анемиях у новорожденных.

МСНС (этот индекс в ходе почти любого заболевания изменяется в последнюю очередь, поэтому он важен для контроля качества лабораторного исследования).

Снижение

Микроцитарная анемия. Нормальная величина МСНС не исключает наличие анемии; значительный лейкоцитоз (выше 5*109г/л).

Повышение

Наследственный сфероцитоз можно предположить при МСНС выше 36 г/дл; у новорожденных; * гемолиз in vivo; * наличие холодовых агглютининов или липемия сыворотки.

* - эти факторы оказывают влияние на ход исследований.

Обмен железа и патогенез железодефицитных анемий (По Ходосовскому М.Н., Маслакову Д.А. и др., 2004 г.) (рис. 1)

Недостаток Fe в пище или повышение потребности в нём (беременность, лактация)

Поступление железа с пищей (15-18 мг/сут)

Взаимодействие Fe c HCl желудочного сока и активное всасывание энтероцитами кишечника

(1,5-2 мг/сут)

Нарушения всасывания железа

Недостаточность запасов Fe (недоношенность)

Органы и ткани

Клеточное Fe: миоглобин, железосодержащие ферменты

Депо Fe: печень, селезенка, костный мозг (ферритин, гемосидерин)

Сывороточное Fe

(12,5-30,4 мкмоль/л)

Fe-трансфер-рин

Перераспределение Fe (злокач. опухоли)

Клетки макрофагально-фагоцитарной системы:

Разрушение эритроцитов,

Hb

Костный мозг

(Эритропоэз

Синтез гема)

Нарушение утилизации железа (отравление Pb)

Кровь

(Гемоглобин эритроцитов)

Хрони-ческая кровопотеря

Повышение потери железа физиологи-ческими путями

Физиологические потери железа

С калом, потом, мочой, слущивающимся эпителием; у женщин также -menses, лактация

Рисунок 1. –– Обмен железа и патогенез железодефицитных анемий

Обмен витамина в12 и патогенез в12-дефицитных анемий (по Ходосовскому м.Н., Маслакову д.А. И др., 2004 г.) (рис.2)

Поступление витамина В12 с пищей

Недостаток витамина В12 в пище

ЖЕЛУДОК

Взаимодействие витамина В12 c внутренним фактором Кастла (гастромукопротеид)

Нарушения всасывания витамина В12

ТОНКИЙ КИШЕЧНИК

Активное всасывание витамина В12 с участием белка-акцептора (транскобаламина II)

Почки, мышцы, сердце и другие органы и ткани

Депонирование и утилизация витамина В12 (протеин-кобаламин)

ПЕЧЕНЬ

Депо витамина В12

Активация фолата в тетрогидрофолат

ПЛАЗМА

Транспорт витамина В12 (транскобаламин II, I и III)

Недостаточ-ность запасов витамина В12

КОСТНЫЙ МОЗГ

Миелопоэз:

Тетрогидрофолат  пуриновые, пиримидиновые основания  синтез ДНК

Нарушение утилизации витамина В12

Повышение потери витамина В12 физиологи-ческими путями

Физиологические потери витамина В12

С калом, мочой, слущивающимся эпителием; у женщин также -menses, лактация

Рисунок 1. –– Обмен витамина В12 и патогенез В12-дефицитных анемий

1. Причины и механизмы изменений физико-химических свойств крови (осмотического и онкотического давления, вязкости, СОЭ, качественного белкового состава) при различных заболеваниях.

Физико-химические свойства крови и плазмы

Функции крови во многом определяются ее физико-химическими свойствами, среди которых наибольшее значение имеют осмотическое давление, онкотическое давление и коллоидная стабильность, суспензионная ус­тойчивость,   удельный вес и вязкость.

Кровь, а также органы, принимающие участие в образовании и разрушении ее клеток, вместе с механизмами регуляции объединяют в единую систему крови.

Физиологические функции крови:

Транспортная функция крови состоит в том, что она переносит газы, питательные вещества, продукты обмена веществ, гормоны, медиаторы, электролиты, ферменты и др.

Дыхательная функция заключается в том, что гемоглобин эритроцитов переносит кислород от легких к тканям организма, а углекислый газ от клеток к легким.

Питательная функция — перенос основных питательных веществ от органов пищеварения к тканям организма.

Экскреторная функция (выделительная) осуществляется за счет транспорта конечных продуктов обмена веществ (мочевины, мочевой кислоты и др.) и лишних количеств солей и воды от тканей к местам их выделения (почки, потовые железы, легкие, кишечник).

Водный баланс тканей зависит от концентрации солей и количества белка в крови и тканях, а также от проницаемости сосудистой стенки.

Регуляция температуры тела осуществляется за счет физиологических механизмов, способствующих быстрому перераспределению крови в сосудистом русле. При поступлении крови в капилляры кожи теплоотдача увеличивается, переход же ее в сосуды внутренних органов способствует уменьшению потери тепла.

Защитная функция - кровь является важнейшим фактором иммунитета. Это обусловлено наличием в крови антител, ферментов, специальных белков крови, обладающих бактерицидными свойствами, относящихся к естественным факторам иммунитета.

Одним из важнейших свойств крови является ее способность свертываться, что при травмах предохраняет организм от кровопотери.

Регуляторная функция заключается в том, что поступающие в кровь продукты деятельности желез внутренней секреции, пищеварительные гормоны, соли, ионы водорода и др. через центральную нервную систему и отдельные органы (либо непосредственно, либо рефлекторно) изменяют их деятельность.

Количество крови в организме.

Общее количество крови в организме взрослого человека составляет в среднем 6—8%, или 1/13, массы тела, т. е. приблизительно 5—6 л. У детей количество крови относительно больше: у новорожденных оно составляет в среднем 15% от массы тела, а у детей в возрасте 1 года —11%. В физиологических условиях не вся кровь циркулирует в кровеносных сосудах, часть ее находится в так называемых кровяных депо (печень, селезенка, легкие, сосуды кожи). Общее количество крови в организме сохраняется на относительно постоянном уровне.

Вязкость крови обусловлена наличием в ней белков и красных кровяных телец — эритроцитов. Если вязкость воды принять за 1, то вязкость плазмы будет равна 1,7—2,2, а вязкость цельной крови около 5,1.

Относительная плотность крови зависит в основном от количества эритроцитов, содержания в них гемоглобина и белкового состава плазмы крови. Относительная плотность крови взрослого человека равна 1,050—1,060, плазмы —1,029—1,034.

Состав крови.

Периферическая кровь состоит из жидкой части — плазмы и взвешенных в ней форменных элементов или кровяных клеток (эритроцитов, лейкоцитов, тромбоцитов)

Если дать крови отстояться или провести ее центрифугирование, предварительно смешав с противосвертывающим веществом, то образуются два резко отличающихся друг от друга слоя: верхний — прозрачный, бесцветный или слегка желтоватый — плазма крови; нижний — красного цвета, состоящий из эритроцитов и тромбоцитов. Лейкоциты за счет меньшей относительной плотности располагаются на поверхности нижнего слоя в виде тонкой пленки белого цвета.

Объемные соотношения плазмы и форменных элементов определяют с помощью гематокрита. В периферической крови плазма составляет приблизительно 52—58% объема крови, а форменные элементы 42— 48%.

Плазма крови, ее состав.

В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ.

К органическим веществам плазмы крови относятся:

1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Общее количество белка в плазме составляет 7—8%;

2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота) составляет 11 —15 ммоль/л (30—40 мг%). При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;

3) безазотистые органические вещества: глюкоза — 4,4—6,65 ммоль/л (80—120 мг%), нейтральные жиры, липиды;

4) ферменты и проферменты: некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.

Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы — Ка+, Са2+, К+, Мg2+ и анионы Сl, НРO4, НСО3

Из тканей организма в процессе его жизнедеятельности в кровь поступает большое количество продуктов обмена, биологически активных веществ (серотонин, гистамин), гормонов; из кишечника всасываются питательные вещества, витамины и т. д. Однако состав плазмы существенно не изменяется. Постоянство состава плазмы обеспечивается регуляторными механизмами, оказывающими влияние на деятельность отдельных органов и систем организма, восстанавливающих состав и свойства его внутренней среды.

Роль белков плазмы.

- Белки обусловливают онкотическое давление. В среднем оно равно 26 мм рт.ст.

- Белки, обладая буферными свойствами, участвуют в поддержании кислотно-основного равновесия внутренней среды организма.

- Участвуют в свертывании крови.

- Гамма-глобулины участвуют в защитных (иммунных) реакциях организма.

- Повышают вязкость крови, имеющую важное значение в поддержании АД.

- Белки (главным образом альбумины) способны образовывать комплексы с гормонами, витаминами, микроэлементами, продуктами обмена веществ и, таким образом, осуществлять их транспорт.

- Белки предохраняют эритроциты от агглютинации (склеивание и выпадение в осадок).

- Глобулин крови – эритропоэтин – участвует в регуляции эритропоэза.

- Белки крови являются резервом аминокислот, обеспечивающих синтез тканевых белков.

Осмотическое и онкотическое давление крови.

Осмотическое давление обусловлено электролитами и некоторыми неэлектролитами с низкой молекулярной массой (глюкоза и др.). Чем больше концентрация таких веществ в растворе, тем выше осмотическое давление. Осмотическое давление плазмы зависит в основном от содержания в ней минеральных солей и составляет в среднем 768,2 кПа (7,6 атм.). Около 60% всего осмотического давления обусловлено солями натрия.

Если жидкость внутренней среды или искусственно приготовленный раствор имеет такое же осмотическое давление, как нормальная плазма крови, подобную жидкую среду или раствор называют изо­тоническим.

Жидкость с более высоким осмотичес­ким давлением называется гипертонической.

Жидкость  с  более  низким  осмотичес­ким  давлением  называется  гипотонической.

Осмотическое давление обеспечивает переход растворителя через полунепроницаемую мембрану от раствора менее концентрированно­го к раствору более концентрированному, поэтому оно играет важ­ную роль в распределении воды между внутренней средой и клет­ками организма. Так, если тканевая жидкость будет гипертоничес­кой, то вода будет поступать в нее с двух сторон — из крови и из клеток, напротив, при гипотоничности внеклеточной среды вода переходит  в  клетки  и  кровь.

Аналогичную реакцию можно наблюдать со стороны эритроцитов крови при изменении осмотического давления плазмы: при гипертоничности плазмы эритроциты, отдавая воду, сморщиваются, а при гипотоничности плазмы набухают и даже лопаются. Последнее, ис­пользуется в практике для определения осмотической стойкости эритроцитов. Так, изотоничным плазме крови является 0,89% рас­твор NaCl. Помещенные в этот раствор эритроциты не изменяют формы. В резко гипотоничных растворах и, особенно, воде эритро­циты набухают и лопаются. Разрушение эритроцитов носит название гемолиз, а в гипотоничных растворах — осмотический гемолиз.

Онкотическое давление плазмы обусловлено белками. Величина онкотического давления колеблется в пределах от 3,325 кПа до 3,99 кПа (25—30 мм рт. ст.). За счет него жидкость (вода) удерживается в сосудистом русле. Из белков плазмы наибольшее участие в обеспечении величины онкотического давления принимают альбумины; вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к себе воду.

Онкотическим давлением называют осмотическое дав­ление, создаваемое белками в коллоидном растворе, поэтому его еще называют коллоидно-осмотическим. Ввиду того, что белки плазмы кро­ви плохо проходят через стенки капилляров в тканевую микросреду, создаваемое ими онкотическое давление обеспечивает удержание воды в крови. Если осмотическое давление, обусловленное солями и мел­кими органическим молекулами, из-за проницаемости гистогематических барьеров одинаково в плазме и тканевой жидкости, то онкоти­ческое давление в крови существенно выше. Кроме плохой проница­емости барьеров для белков, меньшая их концентрация в тканевой жидкости связана с вымыванием белков из внеклеточной среды током лимфы. Таким образом, между кровью и тканевой жидкостью суще­ствует градиент концентрации белка и, соответственно, градиент онкотического давления. Так, если онкотическое давление плазмы крови составляет в среднем 25-30 мм рт.ст., а в тканевой жидкости — 4-5 мм рт.ст., то градиент давления равен 20-25 мм рт.ст. Поскольку из белков в плазме крови больше всего содержится альбуминов, а молекула альбумина меньше других белков и его моляльная концент­рация поэтому почти в 6 раз выше, то онкотическое давление плазмы создается преимущественно альбуминами. Снижение их содержания в плазме крови ведет к потере воды плазмой и отеку тканей, а увели­чение  —  к задержке воды в крови.

Постоянство коллоидно-осмотического давления крови у высокоорганизованных животных является общим законом, без которого невозможно их нормальное существование.

Если эритроциты поместить в солевой раствор, имеющий одинаковое осмотическое давление с кровью, то они заметным изменениям не подвергаются. В растворе с высоким осмотическим давлением клетки сморщиваются, так как вода начинает выходить из них в окружающую среду. В растворе с низким осмотическим давлением эритроциты набухают и разрушаются. Это происходит потому, что вода из раствора с низким осмотическим давлением начинает поступать в эритроциты, оболочка клетки не выдерживает повышенного давления и лопается.

Солевой раствор, имеющий осмотическое давление, одинаковое с кровью, называют изоосмотическим, или изотоническим (0,85—0,9 % раствор NaCl). Раствор с более высоким осмотическим давлением, чем давление крови, получил название гипертонического, а имеющий более низкое давление — гипотонического.

Суспензи­онные свойства

Суспензи­онные свойства крови связаны с коллоидной стабильностью белков плазмы т.е. поддержание клеточных элементов во взвешенном состоянии. Величина суспензионных свойств крови может быть оценена по скорости оседания эритроцитов (СОЭ) в неподвижном объеме  крови.

Таким образом, чем выше содержание альбуминов по сравнению с другими, менее стабильными коллоидными частицами, тем больше и суспензионная способность крови, поскольку альбумины адсорбируются на поверхности эритроцитов. Наоборот, при повышении в крови уровня глобулинов, фибриногена, других крупномолекулярных и нестабильных в коллоидном растворе белков, скорость оседания эритроцитов нарастает, т.е. суспензионные свойства крови падают. В норме   СОЭ  у  мужчин  4-10   мм/ч,   а  у женщин   —   5-12   мм/ч.

Вязкость

Вязкость — это способность оказывать сопротивление течению жидкости при перемещениях одних частиц относительно других за счет внутреннего трения. В связи с этим, вязкость крови представ­ляет собой сложный эффект взаимоотношений между водой и мак­ромолекулами коллоидов с одной стороны, плазмой и форменными элементами — с другой. Поэтому вязкость плазмы и вязкость, цель­ной крови существенно отличаются: вязкость плазмы в 1,8 — 2,5 раза выше, чем воды, а вязкость крови выше вязкости воды в 4- 5 раз. Чем больше в плазме крови содержится крупномолекулярных белков, особенно фибриногена, липопротеинов, тем выше вязкость плазмы. При увеличении количества эритроцитов, особенно их со­отношения с плазмой, т.е. гематокрита, вязкость крови резко воз­растает. Повышению вязкости способствует и снижение суспензион­ных свойств крови, когда эритроциты начинают образовывать агре­гаты. При этом отмечается положительная обратная связь — по­вышение вязкости, в свою очередь, усиливает агрегацию эритроци­тов — что может вести к порочному кругу. Поскольку кровь — неоднородная среда и относится к неньютоновским жидкостям, для которых свойственна структурная вязкость, постольку снижение дав­ления потока, например, артериального давления, повышает вяз­кость крови, а при повышении давления из-за разрушения струк­турированности системы  —  вязкость  падает.

Еше одной особенностью крови как системы, обладающей наряду с ньютоновской и структурной вязкостью, является, эффект Фареуса-Линдквиста. В однородной ньютоновской жидкости, согласно закону Пуазейля, с уменьшением диаметра трубки повышается вяз­кость. Кровь, которая является неоднородной неньютоновской жид­костью, ведет себя иначе. С уменьшением радиуса капилляров менее 150 мк вязкость крови начинает снижаться. Эффект Фареуса-Линдквиста облегчает движение крови в капиллярах кровеносного русла. Механизм этого эффекта связан с образованием пристеночного слоя плазмы, вязкость которой ниже, чем у цельной крови, и миграцией эритроцитов в осевой ток. С уменьшением диаметра сосудов толщина пристеночного слоя не меняется. Эритроцитов в движущейся по узким сосудам крови становится по отношению к слою плазмы меньше, т.к. часть из них задерживается при вхождении крови в узкие сосуды, а находящиеся в своем токе эритроциты двигаются быстрее  и время пребывания  их в  узком сосуде  уменьшается.

Вязкость крови прямо пропорционально сказывается на величине общего периферического сосудистого сопротивления кровотоку, т.е. влияет на функциональное состояние сердечно-сосудистой системы.

Белковый состав плазмы крови

Важную роль в реализации питательной функции крови играют содержащиеся в плазме липиды и белки. Общее число белков плазмы крови состав­ляет около 200, из них 70 выделены в чистом виде. Общее содер­жание белка в крови колеблется в норме от 65 до 85 г/л. Основ­ными плазменными белками являются альбумины (38-50 г/л), гло­булины (20-30 г/л) и фибриноген (2-4 г/л). Таким образом, больше всего в плазме крови содержится альбуминов, и для оценки белко­вого состава плазмы в клинике обычно определяют альбумино/глобулиновый показатель или белковый коэффициент крови, состав­ляющий у здоровых взрослых людей 1,3-2,2. С помощью электро­фореза, т.е. передвижения белковых частиц в электрическом поле, удается выделить так называемые белковые фракции, каждая из которых, кроме альбуминов, образована большим количеством раз­ных по составу белковых молекул. Содержание в плазме основных белковых фракций приведено в табл.2.2.

Таблица 2.2. Основные белковые фракции плазмы крови человека

Выявление белковых фрак­ций основано лишь на физико-химических свойствах белков, а не на физиологическом их значении, поэтому в одну и ту же фракцию попадают белки с разными функциональными свойствами. Наиболее же точную информацию о белковом составе плазмы можно получить определяя  содержание  индивидуальных  белков.

Альбумины — самая однородная фракция белков плазмы. Ос­новная их функция заключается в поддержании онкотического дав­ления. Кроме того альбумины служат резервом аминокислот для белкового синтеза и выполняют тем самым питательную функцию. Благодаря большой поверхности мицелл и их высокому отрицатель­ному заряду, альбумины обеспечивают стабильность коллоидного раствора и суспензионные свойства крови, адсорбируют на своей поверхности и транспортируют вещества не только эндогенного, но и экзогенного происхождения. Так, альбумины переносят неэстерифицированные жирные кислоты, билирубин, стероидные гормоны, соли желчных кислот, а также, пенициллин, сульфаниламиды, ртуть. Альбумины частично связывают гормон щитовидной железы тирок­син  и  значительную часть  ионов  кальция.

Альфа-глобулины включают гликопротеины, т.е. белки, связанные с углеводами (2/3 всей глюкозы плазмы циркулирует в составе гликопротеинов), а также ингибиторы протеолитических фер­ментов, транспортные белки для гормонов, витаминов и микроэле­ментов. К альфа-глобулинам относятся: эритропоэтин — гумораль­ный стимулятор кроветворения; плазминоген — предшественник фермента, растворяющего свернувшуюся кровь; протромбин — один из факторов свертывания  крови и т.д.  Альфа-глобулины  осуществляют транспорт липидов, участвуя в образовании липопротеидных комплексов, в составе которых переносятся триглицериды, фосфолипиды,  холестерин  и сфингомиелины.

Бета-глобулины — самая богатая липидами фракция белка. Находясь в составе липопротеидов, эти белки содержат 3/4 всех липидов плазмы крови, в том числе фосфолипиды, холестерин и сфингомиелины. К этой белковой фракции относятся белок трансферрин, обеспечивающий транспорт железа, большая часть белков системы  комплемента,   многие  факторы  свертывания  крови.

Гамма-глобулины называют также иммуноглобулинами, по­скольку в эту фракцию входят антитела или иммуноглобулины (Ig) 5  классов:  IgA,   IgG,   IgM,   IgD,   IgE.

В общем функции белков плазмы крови сводятся к обеспечению:

1) коллоидно-осмотического и водного гомеостаза,

2) агрегатного состояния крови и ее реологических свойств (вязкость, свертыва­емость, суспензионные свойства),

3) кислотно-щелочного гомеоста­за,

4) иммунного гомеостаза,

5) транспортной функции крови,

6) питательной  функции  крови, как резерв аминокислот.

Физико-химические свойства крови:

Суспензионное свойство - кровь является суспензией, в которой форменные элементы находятся во взвешенном состоянии.

Факторы, обеспечивающие это свойство:

  • содержание мелко- и грубодисперсных белков в плазме; мелкодисперсные белки имеют гидрофильные свойства и поддерживают форменные элементы во взвешенном состоянии; у грубодисперсных белков - гидрофобные свойства способствуют оседанию форменных элементов;

  • количество форменных элементов, чем их больше, тем больше выражены суспензионные свойства крови;

  • вязкость крови - чем больше вязкость, тем больше суспензионные свойства; Показатель суспензионного свойства - скорость оседания эритроцитов (СОЭ).

Коллоидные свойства - выражены в способности белков удерживать воду в сосудистом русле - этим свойством обладают гидрофильные мелкодисперсные белки.

Электролитные свойства - за счет содержания ионов. Это свойство обеспечивает определенную величину осмотического давления крови.

Суспензионная устойчивость крови (скорость оседания эритроцитов — СОЭ). Кровь представляет собой суспензию, или взвесь, так как форменные элементы ее находятся в плазме во взвешенном состоянии. Взвесь эритроцитов в плазме поддерживается гидрофильной природой их поверхности, а также тем, что эритроциты (как и другие форменные элементы) несут отрицательный заряд, благодаря чему отталкиваются друг от друга. Если отрицательный заряд форменных элементов уменьшается, что может быть обусловлено адсорбцией таких положительно заряженных белков, как фибриноген, γ-глобулины, парапротеины и др., то снижается электростатический «распор» между эритроцитами. При этом эритроциты, склеиваясь друг с другом, образуют так называемые монетные столбики. Одновременно положительно заряженные белки выполняют роль межэритроцитарных мостиков. Такие «монетные столбики», застревая в капиллярах, препятствуют нормальному кровоснабжению тканей и органов.

Если кровь поместить в пробирку, предварительно добавив в нее вещества, препятствующие свертыванию, то через некоторое время можно увидеть, что кровь разделилась на два слоя: верхний состоит из плазмы, а нижний представляет собой форменные элементы, главным образом эритроциты. Исходя из этих свойств, Фарреус предложил изучать суспензионную устойчивость эритроцитов, определяя скорость их оседания в крови, свертываемость которой устранялась предварительным добавлением цитрата натрия. Этот показатель получил наименование «скорость оседания эритроцитов (СОЭ)».

Величина СОЭ зависит от возраста и пола. У новорожденных СОЭ равна 1—2 мм/ч, у детей старше 1 года и у мужчин — 6—12 мм/ч, у женщин — 8—15 мм/ч, у пожилых людей обоего пола — 15—20 мм/ч. Наибольшее влияние на величину СОЭ оказывает содержание фибриногена: при увеличении его концентрации более 4 г/л СОЭ повышается. СОЭ резко увеличивается во время беременности, когда содержание фибриногена в плазме значительно возрастает. Повышение СОЭ наблюдается при воспалительных, инфекционных и онкологических заболеваниях, а также при значительном уменьшении числа эритроцитов (анемия). Уменьшение СОЭ у взрослых людей и детей старше 1 года является неблагоприятным признаком.

Величина СОЭ зависит в большей степени от свойств плазмы, чем эритроцитов. Так, если эритроциты мужчины с нормальной СОЭ поместить в плазму беременной женщины, то эритроциты мужчины оседают с такой же скоростью, как и у женщин при беременности.

При многих заболеваниях величина СОЭ может изменяться, что зависит от следующих факто­ров:

1. От изменения соотношения различных фракций белков крови. Увеличение содержания крупнодисперсных белков (глобулины, фибри­ноген) при воспалительных процессах и некото­рых инфекционных заболеваниях ведет к изме­нению СОЭ - слабо заряженные крупнодисперс­ные белки, адсорбируясь на отрицательно заря­женных эритроцитах, уменьшают их поверхно­стный заряд и способствуют тем самым сближе­нию и более быстрому оседанию последних.

  1. От объема, числа и диаметра эритроцитов. Увеличение замедляет, а уменьшение ускоряет оседание эритроцитов.

  2. От содержания холестерина и лецитина в крови. Холестерин, адсорбируясь на эритроци­тах, ускоряет, а лецитин, напротив, замедляет СОЭ.

  1. От изменения относительной плотности эритроцитов. При гиперкапнии (асфиксия, сер­дечная декомпенсация) СОЭ замедляется вследствие увеличения диаметра эритроцитов и умень­шения их относительной плотности.

  2. От вязкости крови. Гидремия приводит к ускорению оседания эритроцитов, с увеличением вязкости крови (обезвоживание) СОЭ замедля­ется.

Большое влияние на СОЭ оказывают прием некоторых лекарств и терапевтические меропри­ятия. Так, ускорение оседания эритроцитов от­мечается при специфической и неспецифичес­кой раздражающей терапии, вакцинотерапии, переливании крови, длительных приемах соды и т. д. Замедление СОЭ наблюдается при приеме салициловых, ртутных и кальциевых препара­тов, диуретиков, снотворных и противомалярий­ных средств.

В физиологических условиях СОЭ увели­чивается при беременности (во второй половине) и при интенсивной физической работе.

Общий белок.

В плазме крови человека содержится около 100 различных белков. По подвижности при электрофорезе их можно грубо разделить на пять фракций: альбумин, α1-, α2-, β- и γ-глобулины. Разделение на альбумин и глобулин первоначально основывалось на различии в растворимости: альбумины растворимы в чистой воде, а глобулины — только в присутствии солей.

Определение уровня общего белка является одним из важнейших лабораторных показателей, т.к. белки плазмы крови играют важную физиологическую роль в организме:

  • поддерживают вязкость, текучесть крови;

  • определяют объем крови в сосудистом русле;

  • удерживают форменные элементы крови во взвешенном состоянии;

  • осуществляют транспорт многочисленных экзо- и эндогенных веществ (гормонов, минеральных компонентов, липидов, пигментов и др. биологически важных соединений);

  • регулируют постоянство рН крови;

  • являются факторами свертывания крови;

  • участвуют в иммунных реакциях (иммуноглобулины, опсонины, белки острой фазы).

Основная масса белков плазмы синтезируется в печени. Клетки печени (гепатоциты) участвуют в синтезе альбуминов, фибриногена, α- и β-глобулинов, компонентов свертывающей системы. Большая часть β- и γ-глобулинов синтезируется в клетках иммунной системы (лимфоцитах).

Содержание общего белка в сыворотке (плазме) крови можно охарактеризовать понятиями «нормо-», «гипер-» и «гипопротеинемия», под которыми подразумеваются состояния, сопровождающиеся нормальной (не выходящей за пределы физиологических колебаний), повышенной и пониженной его концентрацией в крови.

Изменения уровня общего белка плазмы крови и отдельных фракций может быть обусловлено многими причинами, причем это касается как количественного, так и качественного состава белков. Эти изменения не являются специфическими, а отражают общий патологический процесс (воспаление, некроз, новообразования), динамику и тяжесть заболевания. С их помощью можно оценить эффективность лечения. Поэтому определение общего белка и отдельных фракций, при правильной их трактовке, имеет важное клинико-диагностическое значение.

Показания к назначению анализа:

  • Острые и хронические инфекционные заболевания

  • Системные заболевания, коллагенозы;

  • Патология печени и почек;

  • Онкологические заболевания;

  • Нарушения питания;

  • Термические ожоги.

Материал для исследования: сыворотка крови.

Подготовка к исследованию: забор крови производится строго натощак (спустя 6-8 часов после последнего приема пищи).

Сроки исполнения: 1 день

Единицы измерения: г/л

Референсные значения*:

Возраст Уровень общего белка, г/л

Дети до 1 года 44 - 73

Дети 1-2 года 56 - 75

Дети 2-14 лет 6 0 - 80

Дети старше 14 лет, 66 - 88

взрослые

*Референсные значения - это медицинский термин, употребляемый при оценке результатов лабораторных исследований; определяется как среднее значение конкретного лабораторного показателя, которое было получено при массовом обследовании здорового населения. В качестве синонима используют термин референтные значения.

Изменения концентрации общего белка могут быть физиологическими, относительными и абсолютными.

Физиологическая гипопротеинемия может наблюдаться у детей раннего возраста, у женщин во время беременности (особенно в третьем триместре), при лактации, при длительном постельном режиме.

Относительные изменения содержания белка наблюдаются при увеличении (уменьшении) объема циркулирующей крови. Так, гидремия (нагрузка водой, «водное» отравление) приводит к относительной гипопротеинемии, а дегидратация (обезвоживание) – к относительной гиперпротеинемии.

Абсолютная гипопротеинемия - наблюдается при:

  • Недостаточности поступления белков в организм вследствие голодания, недоедания, сужения (стриктуры) пищевода, нарушения целостности и функции желудочно-кишечного тракта, при продолжительных воспалительных процессах в стенке кишечника и других состояниях, сопровождающихся ухудшением переваривания и всасывания белков.

  • Нарушении синтеза белков в организме вследствие нарушения белковосинтетической функции печени (циррозы, гепатиты, карцинома и метастазы опухолей в печень, токсическое поражение).

  • Повышенных потерях белка организмом вследствие острых и хронических кровотечений, обширных ожогов, хронических заболеваний почек с нефротическим синдромом.

  • Усиленном катаболизме (распаде) белка вследствие продолжительной гипертермии, термических ожогов, тиреотоксикоза, длительных физических нагрузок, онкологических заболеваний.

  • Перераспределении белка (выход белка из сосудистого русла и образование экссудатов и транссудатов).

Абсолютная гиперпротеинемия – сравнительно редкое явление, наблюдается при:

  • Острых и хронических инфекционных заболеваниях (за счет глобулинов).

  • Аутоиммунной патологии (системная красная волчанка, ревматоидный артрит, ревматизм и т. д.).

  • Онкологических заболеваниях с гиперпродукцией патологических белков - парапротеинемия (миеломная болезнь (плазмоцитома), макроглобулинемия Вальденстрема).

Интерпретируя изменения показателей, характеризующих состояние белкового обмена при отдельных заболеваниях, следует иметь в виду, что уровень общего белка в сыворотке крови может быть повышен при венозном стазе, вызванном пережатием жгутом области предплечья, и снижен при разведении крови вследствие инъекций, в положении лежа, во время ночного сна (пределы колебаний составляют 10-13 г/л), при внутривенных вливаниях, беременности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]