
- •Конспект лекций Jet Propulsion.
- •Содержание
- •Об изучении дисциплины.
- •Тема 1 Дальнемагистральный самолёт, основные данные и облик
- •1.0 Введение
- •1.1 Коммерческий облик (основные данные)
- •1.2 Дальнемагистральный самолет
- •1.3 Двигатель для дальнемагистрального самолёта
- •1.4 Используемые единицы
- •1.5 Стандартная атмосфера
- •1.6 Проблемы окружающей среды
- •Тема 2 Аэродинамика самолета
- •2.0 Введение
- •2.1 Параметры крыла
- •2.2 Подъемная сила, лобовое сопротивление, расход топлива и дальность полета
- •2.3 Уравнение дальности Брегэ
- •2.4 Выбор тяги двигателя
- •2.5 Масса двигателя и расход топлива
- •Тема 3 Создание тяги в реактивном двигателе
- •3.0 Введение
- •3.1 Изменение импульса
- •3.2 Тяговая эффективность
- •3.3 Полная эффективность
- •Тема 4 Цикл газовой турбины.
- •4.0 Введение
- •4.1 Принцип работы газовой турбины
- •4.2 Изоэнтропическая эффективность процессов и работа цикла
- •4.3 Гтд, Тепловая эффективность цикла
- •4.4 Свойства газа (рабочего тела)
- •4.5 Газовая турбина и реактивный двигатель
- •5.0 Введение
- •5.1 Турбореактивный и двухконтурный
- •5.2 Двигатели большой степени двухконтурности
- •5.4 (C). Двигатель General Electric «ge90», (диаметр вентилятора на входе 3.12м).
- •5.3 Температура на входе в турбину
- •Тема 6 Элементы механики течения сжимаемого газа
- •6.0 Введение
- •6.1 Несжимаемый и сжимаемый поток(течение)
- •6.2 Статическое и заторможенное состояния
- •6.3 Запертое сопло
- •6.4 Приведенный массовый поток
- •7.1 Определения и условные обозначения
- •7.2 Определение реактивной скорости и степени повышения давления в вентиляторе
- •7.3 Удельный расход топлива с учетом установки двигателя на самолет
- •Р исунок 7.4
- •7.4 Соотношение реактивных скоростей в контурах
- •8.0 Введение
- •8.1 Параметры и характеристики двигателя
- •8.2 Безразмерные переменные двигателя
- •8.3 Безразмерное представление тяги
- •8.4 Практические параметры для вычислений
- •9.0 Введение
- •9.1. Уравнение работы Эйлера
- •9.2 Коэффициент расхода и коэффициент работы
- •9.3 Осевая турбина
- •9.4 Осевой центральный компрессор
- •9.1(2) Лопатки осевых компрессоров и турбин
- •9.2(2) Осевая турбина
- •9.3(2) Осевой центральный компрессор
- •Тема 10 Камера сгорания
- •10.1 Выделение химической энергии
- •10.2 Относительный расход топлива и температура перед турбиной
- •10.3 Скорость горения и стабилизация пламени
- •10.4 Ограничения подачи топлива и эффективность горения
- •10.5 Охлаждение стенок кольцевых камер сгорания
- •10.6 Эмиссия: возникновение, управление и контроль
- •11.0 Введение
- •11.1 Свойства газов в газовой турбине
- •11.2 Реактивное сопло
- •11.3 Вентилятор
- •11.4 Центральный компрессор ( компрессор вд)
- •11.4.1 Определение эффективности, изоэнтропическая и политропическая эффективность
- •11.4.2 Нерасчетные режимы многоступенчатых компрессоров
- •11.5 Характеристики турбин
- •12.0 Введение
- •12.1 Допущения и упрощения
- •12.2 Одновальный турбореактивный двигатель
- •12.2.1 Отношение давлений в турбине. Баланс мощностей турбины и компрессора
- •12.2.2 Согласование работы турбины и реактивного сопла
- •12.2.3 Рабочая линия компрессора
- •12.3 Двухвальный турбореактивный двигатель
- •12.4 Двухвальный турбовентиляторный двигатель большой степени двухконтурности.
- •12.5 Трехвальный турбовентиляторный двигатель большой степени двухконтурности.
- •13.0 Введение
- •13.1 Типы боевых самолетов
- •13.2 Требования к боевому самолету
- •13.3 Параметры изучаемого проекта
- •14.0 Введение
- •14.1 Подъем и ускорение
- •14.2 Лобовое сопротивление и подъемная сила
- •14.3 Энергетическая и специфическая избыточная мощность
- •14.4 Эксплуатация на пониженных режимах
- •14.5 Управляемый вектор тяги
- •15.0 Введение
- •15.1 Удельная тяга
- •15.2 Особенности двигателей с высокой удельной тягой
- •15.2.1 Смешение потоков газогенератора и внешнего контура
- •15.2.2 Компрессор нд или вентилятор
- •15.2.3 Основной компрессор
- •15.2.4 Камера сгорания
- •15.2.5 Турбина
- •15.2.6 Форсажная камера
- •15.2.7 Реактивное сопло
- •15.2.8 Сверхзвуковое входное устройство
- •15.3 Термодинамический цикл двигателей боевых самолетов
- •15.4 Некоторые ограничения для двигателей боевых самолетов
- •15.5 Режимы работы двигателя
- •16.0 Введение
- •16.1 Стандарт технологии
- •16.2 Полный расчет двигателя
- •16.3 Выбор полной степени повышения давления
- •16.4 Выбор степени повышения давления вентилятора
- •16.5 Размер двигателя для максимального режима
- •16.6 Эффект дожигания (использования форсажа)
- •16.7 Эффект изменений в принятых параметрах
- •17.0 Введение
- •17.1 Значение нерасчетных режимов
- •17.2 Альтернативные проекты
- •17.3 Модель двухконтурного двухвального двигателя
- •17.3.1 Запертые турбины
- •17.3.2 Баланс мощности вала нд
- •17.3.3 Расход воздуха
- •17.3.4 Метод решения
- •17.4 Влияние изменения температуры перед турбиной
- •17.5 Размерный анализ и расчет характеристик
- •17.6 Проекты 1 и 2 двигателя на максимальном и боевом режимах
- •17.7 Работа двигателя при пониженной тяге
- •18.0 Введение
- •18.1 Компрессоры
- •18.2 Турбины
- •19.0 Введение
- •19.1 Смешение потоков в двигателе высокой степени двухконтурности
- •19.2 Эффекты изменения параметров на стадии проектирования
- •19.3. Эффекты изменения параметров выполненного двигателя
- •19.4 Высокоскоростной гражданский транспорт
- •19.5 Проект самолета большой дальности
16.2 Полный расчет двигателя
В двухконтурном двигателе со смешением, подобном тому, что изображён на рисунке 15.1, с установленной геометрией и уровнем технологии, достаточно двух параметров, чтобы определить тип двигателя. Первый параметр - это полное отношение давлений
Р03 / Р02, а второй параметр - отношение давлений между входом в компрессор и входом в реактивное сопло, Р08 / P02. Это второе отношение давлений, пренебрегая потерями давления в каналах и при смешивании, равно степени повышения давления в компрессоре НД (или вентиляторе) Р013 / Р02. Таким образом, определение отношения давления Р03 / Р02 и Р013 / Р02, вместе с T04 / T02 , является достаточным, для определения общей работы двигателя (то есть величины его удельной тяги и удельного расхода топлива).
Для данной полной степени повышения давления Р03 / Р02 и степени повышения температуры T04 / T02 существует определенное количество мощности, необходимое для привода вентилятора. Если выбранное отношение давлений вентилятора повысить, массовая норма потока, сжатого в нём, должна быть уменьшена, другими словами, должна понизиться степень двухконтурности. Небольшое изменение степени повышения давления может вызвать большое изменение в степени двухконтурности, потому что увеличение в степени повышения давления не только увеличивает работу на единицу массы требуемой вентилятором, но также увеличивает давление за турбиной НД и поэтому уменьшает выход её мощности.
Полные вычисления
С введением упрощения по использованию полной степени повышения давления и степени повышения давления вентилятора, принятыми как исходные параметры, вычисления всего цикла двигателя стали заметно проще. Условия торможения на входе в компрессор, в сечении 2, определяются высотой полёта, числом Маха и потерями на входе (которые обычно ощущаются на сверхзвуковых скоростях полёта). Отношение давлений вентилятора устанавливает давление торможения на входе в компрессор ВД - Р023. В данном случае принимается, что вентилятор создаёт равное давление торможения и температуру торможения в каналах внешнего контура и газогенератора, то есть, Р023 = P013 и Т023 = Т013. При известной эффективности вентилятора, соответствующая температура и отношение давлений для основного потока в вентиляторе, составляют:
Подобное выражение связывает температуру торможения и давление за компрессором Т03 и Р03.
Поток топлива в основной
камере сгорания,
требуемый для повышения
температуры на входе в турбину Т04
определяется выражением, представленным
в разделе 11.6. В данном случае в сгорании
участвует не весь поток воздуха, так
как некоторая его часть используется,
для охлаждения турбины, но всё же
добавляется масса топлива; поэтому
массовый поток газа, за сопловым аппаратом
турбины ВД, определяется как:
(с удельной теплоёмкостью
Cpe).
Так как температура на входе в турбину
определяется для всей смеси исходя из
температуры на выходе из статора турбины
и воздуха охлаждения лопаток соплового
аппарата, они и включены в уравнение
баланса, приведённое ниже:
|
(16.3) |
где
- массовый поток воздуха на выходе из
соплового аппарата турбины. Процесс
горения не совсем полон к моменту
времени, когда газы покидают камеру
сгорания, и при более детальном
рассмотрении, эффективность процесса
горения уменьшила бы тепловую величину.
Эффективность процесса горения, в
большинстве операционных режимов,
вероятно, будет более 98 %.
Мощность турбины ВД должна
равняться мощности компрессора ВД с
основным массовым потоком воздуха через
компрессор
и определяться, как:
|
(16.4) |
откуда можно выразить величину Т045. Тогда, зная величину отношения Т045 / Т04, величину политропической эффективности турбины и k для продуктов сгорания, можно рассчитать отношение давлений турбины ВД, используя политропическое соотношение:
|
(16.5) |
где Т045 и P045 могут быть определены, как условия на выходе из турбины ВД .
Охлаждающий воздух ротора
турбины ВД (с массовой величиной потока
равной разности
и температурой за
компрессором Т03)
при смешении с постоянным давлением,
даёт температуру смеси Т045’
(Обратите внимание на штрих):
|
(16.6) |
Ниже по потоку принимаем, что смесь имеет ту же удельную теплоемкость и величину k газа, как и для сечения 45, что является приближением, достаточно удовлетворительным, так как охлаждающий воздух представляет только малую долю полного потока газа. При прохождении через турбину НД:
|
(16.7) |
Для случая, когда в двухконтурном двигателе со смешением Р05 = P013. (Напомним, что здесь, в качестве упрощения было принято, что поток внешнего контура и основной поток за вентилятором, имеют одинаковые величины температур и давлений, то есть T013 = T023 и P013 = P023). Так как определено давление P05, тогда известно и отношение температур в турбине. Т045’, определяемая из уравнения смешения (или уравнения 16.5), используется после того, как становится известна величина температуры за турбиной ВД - Т045. Ниже по потоку турбины НД появляется ещё один процесс смешения:
|
(16.8) |
Мощность турбины НД, пропуская
массовый поток (
),
должна равняться мощности вентилятора.
Вентилятор пропускает массовый поток
так, что баланс мощности для вала НД
принимает вид:
|
(16.9) |
Когда отношение давлений вентилятора и полное отношение давлений представляются через параметры на входе, целесообразнее использовать уравнения 16.3 - 16.9, позволяющие выполнить прямое вычисление всех температур и давлений в двигателе. Однако, если вместо степени повышения давления вентилятора даётся степень двухконтурности, необходимо провести повторный перерасчёт, варьируя величиной степени повышения давления вентилятора.
Ниже по потоку турбины НД, когда потоки газогенератора и внешнего контура смешиваются, а форсажная камера не включена, температура однородной смеси получается из уравнения:
|
(16.10) |
где Cpm - удельная теплоёмкость смешанного потока.
При включенной форсажной
камере температура смешения без
дожигателя может быть использована для
составления уравнения баланса энергии,
позволяющего определить расход топлива
,
необходимый форсажной камере, для
повышения величины температуры T06,
до уровня, требуемого в горле реактивного
сопла, Т08
= Т0ab:
|
(16.11) |
Процесс горения обычно не полон к тому времени, когда газы входят в реактивное сопло и при более детальном изложении, эффективность от процесса горения в форсажной камере должна быть представлена умноженной на величину LCV (то есть на низшую теплотворную способность). Величина этой эффективности составляет приблизительно 90 %.