- •Історія нейронних мереж.
- •Аналогія штучних нейронних мереж з мозком людини.
- •Біологічний нейрон.
- •Базовий штучний нейрон.
- •Модель штучного нейрона як «елемента обробки».
- •Штучні нейронні мережі та задачі, які вони виконують.
- •Навчання штучної нейронної мережі. Контрольоване навчання.
- •Контрольоване навчання
- •Навчання штучної нейронної мережі. Неконтрольоване навчання.
- •Неконтрольоване навчання
- •Оцінка ефективності та правила навчання нейромережі. Правила Хеба та Хопфілда Оцінки навчання
- •Правила навчання
- •Правила навчання нейромережі. Правило «дельта», градієнтного спуску та навчання методом змагання.
- •Обґрунтованість застосування нейронних мереж. Проблеми розв’язуванні в контексті нейромоделювання.
- •Машина фон Неймана у порівнянні з біологічною нейронною системою.
- •Розширена модель штучного нейрону.
- •Компоненти штучного нейрону. Вагові коефіцієнти та функція суматора. Компоненти штучного нейрона
- •Компоненти штучного нейрону. Передатна функція. Компоненти штучного нейрона
- •Компоненти штучного нейрону. Масштабування та вихідна функція. Компоненти штучного нейрона
- •Компоненти штучного нейрону. Функція похибки та поширюваного назад значення, функція навчання. Компоненти штучного нейрона
- •Перцептрон Розенбалата. Перцептрон Розенбалата
- •Алгоритм навчання одношарового перцептрону. Алгоритм навчання одношарового перцептрона
- •Особливості перцептрону, недоліка та переваги. Модифікації перцептрону.
- •Нейромережа зворотного поширення похибки(Back Propagation)
- •Правила до вибору архітектури мережі зворотного поширення похибки (Back Propagation).
- •Алгоритм навчання мережі зворотного поширення похибки (Back Propagation). Алгоритм навчання мережі
- •Нейромережа Delta bar Delta. Недоліки та переваги
- •Нейромережа Extended Delta bar Delta.
- •Мережа скерованого випадкового пошуку (Directed Random Search).Основні компоненти, переваги та недоліки.
- •Нейромережа вищого порядку або функціонально - пов’язана нейронна мережа. Нейронна мережа вищого порядку або функціонально-пов'язана нейронна мережа
- •Мережа Кохонена. Недоліки, переваги та модифікації мережі. Мережа Кохонена
- •Алгоритм функціонування мережі Кохонена. Алгоритм функціонування мережі Кохонена:
- •Мережа квантування навчального вектора (Learning Vector Quantization).Недоліки та переваги. Квантування навчального вектора (Learning vectorquantization)
- •Мережа зустрічного поширення (сounterрropagation). Мережа зустрічного поширення (counterрropagation)
- •Навчання та функціонування мережі зустрічного поширення (сounterрropagation). Навчання мережі
- •Функціонування мережі
- •Імовірнісна нейронна мережа. Імовірнісна нейронна мережа
- •Мережа Хопфілда. Мережа Хопфілда
- •Алгоритм функціонування мережі Хопфілда. Алгоритм функціонування мережі
- •Машина Больцмана (Boltzmann mashine). Машина Больцмана
- •Алгоритм функціонування мережі Больцмана. Алгоритм функціонування мережі
- •Мережа Хемінга. Мережа Хемінга
- •Алгоритм функціонування мережі Хемінга. Алгоритм функціонування мережі Хемінга
- •Мережа двоскерованої асоціативної пам’яті. Недоліки, переваги та модифікації Двоскерована асоціативна пам'ять
- •Мережа адаптивної резонансної теорії. Мережа адаптивної резонансної теорії
- •Алгоритм функціонування мережі адаптивної резонансної теорії. Алгоритм функціонування мережі
- •Базові концепції моделі "Функціонал на множині табличних функцій" (фтф).
- •Навчання та функціонування моделі "Функціонал на множині табличних функцій" (фтф).
- •Алгоритм для режиму навчання моделі "Функціонал на множині табличних функцій"(фтф).
- •Алгоритм для режиму функціонування моделі "Функціонал на множині табличних функцій" (фтф).
- •Особливості формування передатних функцій в моделі "Функціонал на множині табличних функцій" (фтф).
- •Представлення задач. Логічні моделі
- •Представлення задач. Мережеві моделі
- •Представлення задач. Продукційні моделі
- •Представлення задач. Сценарії
- •Методи вирішення задач. Рішення задач методом пошуку в просторі станів.
- •Методи вирішення задач. Рішення задач методом редукції.
- •Методи вирішення задач. Рішення задач дедуктивного вибору.
- •Методи вирішення задач. Рішення задач, що використовують немонотонні логіки, імовірнісні логіки.
- •Класифікація рівнів розуміння виконавчих систем.
- •Данные и знания. Основные определения.
- •Особливості знань. Перехід від бази даних до бази знань. Особенности знаний. Переход от Базы Данных к Базе Знаний.
- •Неформальні (семантичні) моделі представлення знань. Модели представления знаний. Неформальные (семантические) модели.
- •Формальні моделі представлення знань. Формальные модели представления знаний.
- •Комплексна схема нечіткого планування задач.
- •Особливості планування цілеспрямованих дій.
- •Оцінки складності завдання планування.
- •Призначення експертних систем.
- •Структура експертних систем.
- •Етапи розробки експертних систем.
- •Представлення знань в експертних системах.
- •Методи пошуку рішень в експертних системах.
- •Підготовчий етап роботи зі знанням.
- •Основний етап роботи зі знанням.
- •Системи придбання знань від експертів.
- •Передумови виникнення систем розуміння природної мови. Предпосылки возникновения систем понимания естественного языка
- •Понимание в диалоге
- •Приклади системи обробки природної мови. Примеры системы обработки естественного языка
- •Методи озвучування мови. Методы озвучивания речи
- •Система розпізнавання мовлення. Акустична модель
- •Система розпізнавання мовлення. Лінгвістична модель.
- •Класифікація систем розпізнавання мовлення. Классификация систем распознавания речи
- •Розпізнавання символів. Шаблонні системи. Распознавание символов
- •Розпізнавання символів. Структурні системи.
- •Розпізнавання символів. Ознакові системи.
- •Розпізнавання рукописних текстів. Распознавание рукописных текстов
- •Архітектура експертної системи реального часу. Архитектура экспертной системы реального времени
- •Системи управління з нечіткою логікою.
- •Лінгвістичні змінні та їх використання в системах з нечіткою логікою.
- •Операції над нечіткими множинами.
- •Основна структура і принцип роботи системи нечіткої логіки.
- •Блок фаззіфікації в системі з нечіткою логікою.
- •База правил нечіткої логіки.
- •Блок виводу в системи з нечіткою логікою.
- •Блок дефаззіфікації в системи з нечіткою логікою.
- •Нейрочіпи та їх класифікація.
Машина фон Неймана у порівнянні з біологічною нейронною системою.
Характеристики |
Машина фон Неймана |
Біологічна нейрона система |
Процесор |
Складний Високошвидкісний Один чи декілька |
Простій Низькошвидкісний Велика кількість |
Пам'ять |
Відділена від процесора Локалізована Адресація не по змісту |
Інтегрована в процесор Розподілена Адресація по змісту |
Обчислення |
Централізовані Послідовні Збережені програми |
Розподілені Паралельні Самонавчання |
Надійність |
Висока вразливість |
Живучість |
Спеціалізація |
Чисельні і символьні операції |
Проблеми сприйняття |
Середовище функціонування |
Строго визначена Строго обмежена |
Погано визначена Без обмежень |
Функції |
Логічно, через правила, концепції, обчислення |
Через зображення, рисунки, керування |
Метод навчання |
За правилами (дидактично) |
За прикладами (сократично) |
Застосування |
Числова та символьна обробка інформації |
Розпізнавання мови Розпізнавання образів Розпізнавання текстів |
Розширена модель штучного нейрону.
Поглиблені уявлення щодо будови біологічного дозволяють представити модель технічного нейрона в розширеному вигляді, деталізована структура якого наведена на рис. 1, де 1 - суматор, який моделює функції тіла біологічного нейрона; 2 - функціональний перетворювач, що виконує роль аксонного горбка; 3 - збуджуючий синапс; 4 - гальмуючий синапс; 5 - вхідний сигнал; 6 - дихотомічне галуження вхідного сигналу; 7 - вихідний сигнал; 8 - дихотомічне галуження вихідного сигналу; 9 - прямий зв'язок, що відповідає аксодендритному зв'язку між біологічними нейронами; 10 - зворотній (аксосоматичний) зв'язок.
Рис. 1. Розширена модель нейронного елемента
Підставою для деталізації моделі нейронного елемента можна вважати встановлення нових фактів в області нейрофізіології, зокрема:
Наявність декількох місць синаптичного контакту.
Дихотомічне галуження дендритів різних порядків, що відповідає логічним операціям "І", "АБО", "Виключаюче АБО", виділення максимального або мінімального сигналу в технічних аналогах.
Різні діаметри стовбурових дендритів, гілок, що безпосередньо прилягають до тіла нейрона, причому величина діаметра визначає степінь важливості інформації, яка проходить через дендрит.
Наявність "доріжок" на поверхні соми, які проходять від головних стовбурних дендритів до аксона, що обумовлює наявність паралельних шляхів обробки інформації і надає можливість застосування логічних операцій над сигналами, які надходять від різних стовбурових дендритів.
Особливості функціонування аксонного горбка; власне аксонний горбок встановлює передатну функцію нейрона, яка має набагато складнішу форму від прийнятих в нейромережевих технологіях сигмоїдальних або лінійних передатних функцій.
Наявність дихотомічного галуження аксона; у вузлах галуження відбувається керування проходженням сигналу, що залежить від співвідношення діаметрів різних гілок аксона; при математичному моделюванні ці особливості можна реалізувати за допомогою логічних операцій.
Наявність зворотного аксосоматичного зв'язку, що вже знайшло свою реалізацію при побудові рекурентних нейромереж.
Поглиблені знання відносно будови біологічного нейрона, як ефективного перетворюючого інструмента, можна розглядати як джерело базових ідей та концепцій по створенню нових парадигм нейромереж не лише на даний час, але і на віддалену перспективу.
