
- •Історія нейронних мереж.
- •Аналогія штучних нейронних мереж з мозком людини.
- •Біологічний нейрон.
- •Базовий штучний нейрон.
- •Модель штучного нейрона як «елемента обробки».
- •Штучні нейронні мережі та задачі, які вони виконують.
- •Навчання штучної нейронної мережі. Контрольоване навчання.
- •Контрольоване навчання
- •Навчання штучної нейронної мережі. Неконтрольоване навчання.
- •Неконтрольоване навчання
- •Оцінка ефективності та правила навчання нейромережі. Правила Хеба та Хопфілда Оцінки навчання
- •Правила навчання
- •Правила навчання нейромережі. Правило «дельта», градієнтного спуску та навчання методом змагання.
- •Обґрунтованість застосування нейронних мереж. Проблеми розв’язуванні в контексті нейромоделювання.
- •Машина фон Неймана у порівнянні з біологічною нейронною системою.
- •Розширена модель штучного нейрону.
- •Компоненти штучного нейрону. Вагові коефіцієнти та функція суматора. Компоненти штучного нейрона
- •Компоненти штучного нейрону. Передатна функція. Компоненти штучного нейрона
- •Компоненти штучного нейрону. Масштабування та вихідна функція. Компоненти штучного нейрона
- •Компоненти штучного нейрону. Функція похибки та поширюваного назад значення, функція навчання. Компоненти штучного нейрона
- •Перцептрон Розенбалата. Перцептрон Розенбалата
- •Алгоритм навчання одношарового перцептрону. Алгоритм навчання одношарового перцептрона
- •Особливості перцептрону, недоліка та переваги. Модифікації перцептрону.
- •Нейромережа зворотного поширення похибки(Back Propagation)
- •Правила до вибору архітектури мережі зворотного поширення похибки (Back Propagation).
- •Алгоритм навчання мережі зворотного поширення похибки (Back Propagation). Алгоритм навчання мережі
- •Нейромережа Delta bar Delta. Недоліки та переваги
- •Нейромережа Extended Delta bar Delta.
- •Мережа скерованого випадкового пошуку (Directed Random Search).Основні компоненти, переваги та недоліки.
- •Нейромережа вищого порядку або функціонально - пов’язана нейронна мережа. Нейронна мережа вищого порядку або функціонально-пов'язана нейронна мережа
- •Мережа Кохонена. Недоліки, переваги та модифікації мережі. Мережа Кохонена
- •Алгоритм функціонування мережі Кохонена. Алгоритм функціонування мережі Кохонена:
- •Мережа квантування навчального вектора (Learning Vector Quantization).Недоліки та переваги. Квантування навчального вектора (Learning vectorquantization)
- •Мережа зустрічного поширення (сounterрropagation). Мережа зустрічного поширення (counterрropagation)
- •Навчання та функціонування мережі зустрічного поширення (сounterрropagation). Навчання мережі
- •Функціонування мережі
- •Імовірнісна нейронна мережа. Імовірнісна нейронна мережа
- •Мережа Хопфілда. Мережа Хопфілда
- •Алгоритм функціонування мережі Хопфілда. Алгоритм функціонування мережі
- •Машина Больцмана (Boltzmann mashine). Машина Больцмана
- •Алгоритм функціонування мережі Больцмана. Алгоритм функціонування мережі
- •Мережа Хемінга. Мережа Хемінга
- •Алгоритм функціонування мережі Хемінга. Алгоритм функціонування мережі Хемінга
- •Мережа двоскерованої асоціативної пам’яті. Недоліки, переваги та модифікації Двоскерована асоціативна пам'ять
- •Мережа адаптивної резонансної теорії. Мережа адаптивної резонансної теорії
- •Алгоритм функціонування мережі адаптивної резонансної теорії. Алгоритм функціонування мережі
- •Базові концепції моделі "Функціонал на множині табличних функцій" (фтф).
- •Навчання та функціонування моделі "Функціонал на множині табличних функцій" (фтф).
- •Алгоритм для режиму навчання моделі "Функціонал на множині табличних функцій"(фтф).
- •Алгоритм для режиму функціонування моделі "Функціонал на множині табличних функцій" (фтф).
- •Особливості формування передатних функцій в моделі "Функціонал на множині табличних функцій" (фтф).
- •Представлення задач. Логічні моделі
- •Представлення задач. Мережеві моделі
- •Представлення задач. Продукційні моделі
- •Представлення задач. Сценарії
- •Методи вирішення задач. Рішення задач методом пошуку в просторі станів.
- •Методи вирішення задач. Рішення задач методом редукції.
- •Методи вирішення задач. Рішення задач дедуктивного вибору.
- •Методи вирішення задач. Рішення задач, що використовують немонотонні логіки, імовірнісні логіки.
- •Класифікація рівнів розуміння виконавчих систем.
- •Данные и знания. Основные определения.
- •Особливості знань. Перехід від бази даних до бази знань. Особенности знаний. Переход от Базы Данных к Базе Знаний.
- •Неформальні (семантичні) моделі представлення знань. Модели представления знаний. Неформальные (семантические) модели.
- •Формальні моделі представлення знань. Формальные модели представления знаний.
- •Комплексна схема нечіткого планування задач.
- •Особливості планування цілеспрямованих дій.
- •Оцінки складності завдання планування.
- •Призначення експертних систем.
- •Структура експертних систем.
- •Етапи розробки експертних систем.
- •Представлення знань в експертних системах.
- •Методи пошуку рішень в експертних системах.
- •Підготовчий етап роботи зі знанням.
- •Основний етап роботи зі знанням.
- •Системи придбання знань від експертів.
- •Передумови виникнення систем розуміння природної мови. Предпосылки возникновения систем понимания естественного языка
- •Понимание в диалоге
- •Приклади системи обробки природної мови. Примеры системы обработки естественного языка
- •Методи озвучування мови. Методы озвучивания речи
- •Система розпізнавання мовлення. Акустична модель
- •Система розпізнавання мовлення. Лінгвістична модель.
- •Класифікація систем розпізнавання мовлення. Классификация систем распознавания речи
- •Розпізнавання символів. Шаблонні системи. Распознавание символов
- •Розпізнавання символів. Структурні системи.
- •Розпізнавання символів. Ознакові системи.
- •Розпізнавання рукописних текстів. Распознавание рукописных текстов
- •Архітектура експертної системи реального часу. Архитектура экспертной системы реального времени
- •Системи управління з нечіткою логікою.
- •Лінгвістичні змінні та їх використання в системах з нечіткою логікою.
- •Операції над нечіткими множинами.
- •Основна структура і принцип роботи системи нечіткої логіки.
- •Блок фаззіфікації в системі з нечіткою логікою.
- •База правил нечіткої логіки.
- •Блок виводу в системи з нечіткою логікою.
- •Блок дефаззіфікації в системи з нечіткою логікою.
- •Нейрочіпи та їх класифікація.
Навчання штучної нейронної мережі. Контрольоване навчання.
Здатність до навчання є фундаментальною властивістю мозку. Процес навчання може розглядатися як визначення архітектури мережі і налаштування ваг зв'язків для ефективного виконання спеціальної задачі. Нейромережа налаштовує ваги зв'язків по наявній навчальній множині. Властивість мережі навчатися на прикладах робить їх більш привабливими в порівнянні із системами, які функціонують згідно визначеній системі правил, сформульованої експертами.
Для процесу навчання необхідно мати модель зовнішнього середовища, у якій функціонує нейрона мережа - потрібну для вирішення задачі інформацію. По-друге, необхідно визначити, як модифікувати вагові параметри мережі. Алгоритм навчання означає процедуру, в якій використовуються правила навчання для налаштування ваг.
Існують три загальні парадигми навчання: "з вчителем", "без вчителя" (самонавчання) і змішана. У першому випадку нейромережа має у своєму розпорядженні правильні відповіді (виходи мережі) на кожен вхідний приклад. Ваги налаштовуються так, щоб мережа виробляла відповіді як можна більш близькі до відомих правильних відповідей. Навчання без вчителя не вимагає знання правильних відповідей на кожен приклад навчальної вибірки. У цьому випадку розкривається внутрішня структура даних та кореляція між зразками в навчальній множині, що дозволяє розподілити зразки по категоріях. При змішаному навчанні частина ваг визначається за допомогою навчання зі вчителем, у той час як інша визначається за допомогою самонавчання.
Контрольоване навчання
Величезна більшість рішень отримана від нейромереж з контрольованим навчанням, де біжучий вихід постійно порівнюється з бажаним виходом. Ваги на початку встановлюються випадково, але під час наступних ітерації коректуються для досягнення близької відповідності між бажаним та біжучим виходом. Створені методи навчання націлені на мінімізації біжучих похибок всіх елементів обробки, яке створюється за якийсь час неперервною зміною синаптичних ваг до досягнення прийнятної точності мережі.
Перед використанням, нейромережа з контрольованим навчанням повинна бути навченою. Фаза навчання може тривати багато часу, зокрема, у прототипах систем, з невідповідною процесорною потужністю навчання може займати декілька годин. Навчання вважається закінченим при досягненні нейромережею визначеного користувачем рівня ефективності. Цей рівень означає, що мережа досягла бажаної статистичної точності, оскільки вона видає бажані виходи для заданої послідовності входів. Після навчання ваги з'єднань фіксуються для подальшого застосування. Деякі типи мереж дозволяють під час використання неперервне навчання, з набагато повільнішою оцінкою навчання, що допомагає мережі адаптуватись до повільно змінюючихся умов.
Навчальні множини повинні бути досить великими, щоб містити всю необхідну інформацію для виявлення важливих особливостей і зв'язків. Але і навчальні приклади повинні містити широке різноманіття даних. Якщо мережа навчається лише для одного прикладу, ваги старанно встановлені для цього прикладу, радикально змінюються у навчанні для наступного прикладу. Попередні приклади при навчанні наступних просто забуваються. В результаті система повинна навчатись всьому разом, знаходячи найкращі вагові коефіцієнти для загальної множини прикладів. Наприклад, у навчанні системи розпізнавання піксельних образів для десяти цифр, які представлені двадцятьма прикладами кожної цифри, всі приклади цифри "сім" не доцільно представляти послідовно. Краще надати мережі спочатку один тип представлення всіх цифр, потім другий тип і так далі.
Головною компонентою для успішної роботи мережі є представлення і кодування вхідних і вихідних даних. Штучні мережі працюють лише з числовими вхідними даними, отже, необроблені дані, що надходять із зовнішнього середовища повинні перетворюватись. Додатково необхідне масштабування, тобто нормалізація даних відповідно до діапазону всіх значень. Попередня обробка зовнішніх даних, отриманих за допомогою сенсорів, у машинний формат спільна для стандартних комп'ютерів і є легко доступною.
Якщо після контрольованого навчання нейромережа ефективно опрацьовує дані навчальної множини, важливим стає її ефективність при роботі з даними, які не використовувались для навчання. У випадку отримання незадовільних результатів для тестової множини, навчання продовжується. Тестування використовується для забезпечення запам'ятовування не лише даних заданої навчальної множини, але і створення загальних образів, що можуть міститись в даних.