
- •Історія нейронних мереж.
- •Аналогія штучних нейронних мереж з мозком людини.
- •Біологічний нейрон.
- •Базовий штучний нейрон.
- •Модель штучного нейрона як «елемента обробки».
- •Штучні нейронні мережі та задачі, які вони виконують.
- •Навчання штучної нейронної мережі. Контрольоване навчання.
- •Контрольоване навчання
- •Навчання штучної нейронної мережі. Неконтрольоване навчання.
- •Неконтрольоване навчання
- •Оцінка ефективності та правила навчання нейромережі. Правила Хеба та Хопфілда Оцінки навчання
- •Правила навчання
- •Правила навчання нейромережі. Правило «дельта», градієнтного спуску та навчання методом змагання.
- •Обґрунтованість застосування нейронних мереж. Проблеми розв’язуванні в контексті нейромоделювання.
- •Машина фон Неймана у порівнянні з біологічною нейронною системою.
- •Розширена модель штучного нейрону.
- •Компоненти штучного нейрону. Вагові коефіцієнти та функція суматора. Компоненти штучного нейрона
- •Компоненти штучного нейрону. Передатна функція. Компоненти штучного нейрона
- •Компоненти штучного нейрону. Масштабування та вихідна функція. Компоненти штучного нейрона
- •Компоненти штучного нейрону. Функція похибки та поширюваного назад значення, функція навчання. Компоненти штучного нейрона
- •Перцептрон Розенбалата. Перцептрон Розенбалата
- •Алгоритм навчання одношарового перцептрону. Алгоритм навчання одношарового перцептрона
- •Особливості перцептрону, недоліка та переваги. Модифікації перцептрону.
- •Нейромережа зворотного поширення похибки(Back Propagation)
- •Правила до вибору архітектури мережі зворотного поширення похибки (Back Propagation).
- •Алгоритм навчання мережі зворотного поширення похибки (Back Propagation). Алгоритм навчання мережі
- •Нейромережа Delta bar Delta. Недоліки та переваги
- •Нейромережа Extended Delta bar Delta.
- •Мережа скерованого випадкового пошуку (Directed Random Search).Основні компоненти, переваги та недоліки.
- •Нейромережа вищого порядку або функціонально - пов’язана нейронна мережа. Нейронна мережа вищого порядку або функціонально-пов'язана нейронна мережа
- •Мережа Кохонена. Недоліки, переваги та модифікації мережі. Мережа Кохонена
- •Алгоритм функціонування мережі Кохонена. Алгоритм функціонування мережі Кохонена:
- •Мережа квантування навчального вектора (Learning Vector Quantization).Недоліки та переваги. Квантування навчального вектора (Learning vectorquantization)
- •Мережа зустрічного поширення (сounterрropagation). Мережа зустрічного поширення (counterрropagation)
- •Навчання та функціонування мережі зустрічного поширення (сounterрropagation). Навчання мережі
- •Функціонування мережі
- •Імовірнісна нейронна мережа. Імовірнісна нейронна мережа
- •Мережа Хопфілда. Мережа Хопфілда
- •Алгоритм функціонування мережі Хопфілда. Алгоритм функціонування мережі
- •Машина Больцмана (Boltzmann mashine). Машина Больцмана
- •Алгоритм функціонування мережі Больцмана. Алгоритм функціонування мережі
- •Мережа Хемінга. Мережа Хемінга
- •Алгоритм функціонування мережі Хемінга. Алгоритм функціонування мережі Хемінга
- •Мережа двоскерованої асоціативної пам’яті. Недоліки, переваги та модифікації Двоскерована асоціативна пам'ять
- •Мережа адаптивної резонансної теорії. Мережа адаптивної резонансної теорії
- •Алгоритм функціонування мережі адаптивної резонансної теорії. Алгоритм функціонування мережі
- •Базові концепції моделі "Функціонал на множині табличних функцій" (фтф).
- •Навчання та функціонування моделі "Функціонал на множині табличних функцій" (фтф).
- •Алгоритм для режиму навчання моделі "Функціонал на множині табличних функцій"(фтф).
- •Алгоритм для режиму функціонування моделі "Функціонал на множині табличних функцій" (фтф).
- •Особливості формування передатних функцій в моделі "Функціонал на множині табличних функцій" (фтф).
- •Представлення задач. Логічні моделі
- •Представлення задач. Мережеві моделі
- •Представлення задач. Продукційні моделі
- •Представлення задач. Сценарії
- •Методи вирішення задач. Рішення задач методом пошуку в просторі станів.
- •Методи вирішення задач. Рішення задач методом редукції.
- •Методи вирішення задач. Рішення задач дедуктивного вибору.
- •Методи вирішення задач. Рішення задач, що використовують немонотонні логіки, імовірнісні логіки.
- •Класифікація рівнів розуміння виконавчих систем.
- •Данные и знания. Основные определения.
- •Особливості знань. Перехід від бази даних до бази знань. Особенности знаний. Переход от Базы Данных к Базе Знаний.
- •Неформальні (семантичні) моделі представлення знань. Модели представления знаний. Неформальные (семантические) модели.
- •Формальні моделі представлення знань. Формальные модели представления знаний.
- •Комплексна схема нечіткого планування задач.
- •Особливості планування цілеспрямованих дій.
- •Оцінки складності завдання планування.
- •Призначення експертних систем.
- •Структура експертних систем.
- •Етапи розробки експертних систем.
- •Представлення знань в експертних системах.
- •Методи пошуку рішень в експертних системах.
- •Підготовчий етап роботи зі знанням.
- •Основний етап роботи зі знанням.
- •Системи придбання знань від експертів.
- •Передумови виникнення систем розуміння природної мови. Предпосылки возникновения систем понимания естественного языка
- •Понимание в диалоге
- •Приклади системи обробки природної мови. Примеры системы обработки естественного языка
- •Методи озвучування мови. Методы озвучивания речи
- •Система розпізнавання мовлення. Акустична модель
- •Система розпізнавання мовлення. Лінгвістична модель.
- •Класифікація систем розпізнавання мовлення. Классификация систем распознавания речи
- •Розпізнавання символів. Шаблонні системи. Распознавание символов
- •Розпізнавання символів. Структурні системи.
- •Розпізнавання символів. Ознакові системи.
- •Розпізнавання рукописних текстів. Распознавание рукописных текстов
- •Архітектура експертної системи реального часу. Архитектура экспертной системы реального времени
- •Системи управління з нечіткою логікою.
- •Лінгвістичні змінні та їх використання в системах з нечіткою логікою.
- •Операції над нечіткими множинами.
- •Основна структура і принцип роботи системи нечіткої логіки.
- •Блок фаззіфікації в системі з нечіткою логікою.
- •База правил нечіткої логіки.
- •Блок виводу в системи з нечіткою логікою.
- •Блок дефаззіфікації в системи з нечіткою логікою.
- •Нейрочіпи та їх класифікація.
Мережа Хопфілда. Мережа Хопфілда
Джон Хопфілд вперше представив свою асоціативну мережу у 1982 р. У Національній Академії Наук. На честь Хопфілда та нового підходу до моделювання, ця мережна парадигма згадується як мережа Хопфілда. Мережа базується на аналогії фізики динамічних систем. Початкові застосування для цього виду мережі включали асоціативну, або адресовану за змістом пам'ять та вирішували задачі оптимізації.
Мережа Хопфілда використовує три прошарки: вхідний, прошарок Хопфілда та вихідний прошарок. Кожен прошарок має однакову кількість нейронів. Входи прошарку Хопфілда під'єднані до виходів відповідних нейронів вхідного прошарку через змінні ваги з'єднань. Виходи прошарку Хопфілда під'єднуються до входів всіх нейронів прошарку Хопфілда, за винятком самого себе, а також до відповідних елементів у вихідному прошарку. В режимі функціонування, мережа скеровує дані з вхідного прошарку через фіксовані ваги з'єднань до прошарку Хопфілда. Прошарок Хопфілда коливається, поки не буде завершена певна кількість циклів, і біжучий стан прошарку передається на вихідний прошарок. Цей стан відповідає образу, вже запрограмованому у мережу.
Навчання мережі Хопфілда вимагає, щоб навчальний образ був представлений на вхідному та вихідному прошарках одночасно. Рекурсивний характер прошарку Хопфілда забезпечує засоби корекції всіх ваг з'єднань. Недвійкова реалізація мережі повинна мати пороговий механізм у передатній функції. Для правильного навчання мережі відповідні пари "вхід-вихід" мають відрізнятися між собою.
Якщо мережа Хопфілда використовується як пам'ять, що адресується за змістом вона має два головних обмеження. По-перше, число образів, що можуть бути збережені та точно відтворені є строго обмеженим. Якщо зберігається занадто багато параметрів, мережа може збігатись до нового неіснуючого образу, відмінному від всіх запрограмованих образів, або не збігатись взагалі. Межа ємності пам'яті для мережі приблизно 15% від числа нейронів у прошарку Хопфілда. Другим обмеженням парадигми є те, що прошарок Хопфілда може стати нестабільним, якщо навчальні приклади є занадто подібними. Зразок образу вважається нестабільним, якщо він застосовується за нульовий час і мережа збігається до деякого іншого образу з навчальної множини. Ця проблема може бути вирішена вибором навчальних прикладів більш ортогональних між собою.
Структурна схема мережі Хопфилда приведена на рис. 9.
Рис. 9. Структурна схема мережі Хопфілда.
Задача, розв'язувана даною мережею в якості асоціативної пам'яті, як правило, формулюється таким чином. Відомий деякий набір двійкових сигналів (зображень, звукових оцифровок, інших даних, що описують якийсь об'єкти або характеристики процесів), вважають зразковим. Мережа повинна вміти з зашумленого сигналу, поданого на її вхід, виділити ("пригадати" по частковій інформації) відповідний зразок або "дати висновок" про те, що вхідні дані не відповідають жодному із зразків. У загальному випадку, будь-який сигнал може бути описаний вектором x1, хі, хn..., n - число нейронів у мережі і величина вхідних і вихідних векторів. Кожний елемент xi дорівнює або +1, або -1. Позначимо вектор, що описує k-ий зразок, через Xk, а його компоненти, відповідно, - xik, k=0, ..., m-1, m - число зразків. Якщо мережа розпізнає (або "пригадує") якийсь зразок на основі пред'явлених їй даних, її виходи будуть містити саме його, тобто Y = Xk, де Y - вектор вихідних значень мережі: y1, yi, yn. У противному випадку, вихідний вектор не співпаде з жодний зразковим.
Якщо, наприклад, сигнали являють собою якесь зображення, то, відобразивши у графічному виді дані з виходу мережі, можна буде побачити картинку, що цілком збігається з однієї зі зразкових (у випадку успіху) або ж "вільну імпровізацію" мережі (у випадку невдачі).