- •3. Проектування зварних з'єднань при статичному навантаженні
- •4. Проектування зварних з'єднань при циклічному навантаженні
- •6. Проектування типових зварних конструкцій
- •1.1. Опір матеріалів руйнуванню
- •1.1.1. В результаті чого відбувається руйнування тіл?
- •1.1.2. Що розуміється лід терміном «міцність»?
- •1.2. Характеристика навантаження
- •1.2.1. Що таке зовнішні сили?
- •1.2.2. Що таке внутрішні сили?
- •1.2.3. До чого призводить дія внутрішніх сил?
- •1.3. Механічні напруження
- •1.4. Деформації
- •1.5. Напружено-деформований стан
- •1.6. Геометричні характеристики плоских перерізів
- •1.7. Граничний стан
- •1.7.2. Які основні процеси руйнування?
- •1.7.3. У чому полягає процес активного пластичного деформування?
- •1.7.4. Яким чином вивчаються деформаційні процеси, що мають місце в металі при статичному навантаженні?
- •1.7.5. Що отримують при випробуванні на статичне розтягування?
- •1.7.6. Які механічні характеристики матеріалу визначаються на діаграмі розтягування?
- •1.7.10. Що являє собою крихке руйнування?
- •1.7.11. В чому полягає випробування на ударну в'язкість?
- •1.7.12. Як визначається тріщиностійкість матеріалу?
- •1.7.13. Які процеси мають місце при руйнуванні в результаті втомленості матеріалу?
- •1.7.14. Як визначається показник граничного стану при руйнуванні внаслідок втомленості матеріалу?
- •1.9. Основні залежності для визначення напружень
- •1.9.1. На що може працювати брус?
- •1.9.2. Які внутрішні сили виникають при навантаженні бруса осьовою силою?
- •1.9.3. Як визначаються напруження при дії внутрішньої поздовжньої сили розтягування
- •1.9.5. Які внутрішні сили виникають при навантаженні бруса згинаючим моментом?
- •1.9.7. Які внутрішні сили виникають при навантаженні бруса крутячим моментом?
- •1.9.9. Які внутрішні сили виникають при одночасному навантаженні бруса осьовою силою та згинаючим моментом?
- •1.9.10. Які напруження виникають при одночасному
- •1.9.11. Які внутрішні сили виникають
- •1.9.12. Які напруження виникають
- •1.10. Тестові завдання
- •2.1. Матеріали для зварних конструкцій
- •2.1.1. Сталі для зварних конструкцій
- •2.1.2. Алюмінієві сплави
- •2.1.3. Титанові сплави
- •2.1.4. Пластичні маси
- •2.1.5. Композиційні матеріали
- •2.1.6. Вибір матеріалу для зварних конструкцій
- •2.2. Зварні з'єднання і шви 2.2.1. Типи зварних з'єднань
- •2.2.2. Зварні шви
- •2.2.3. Умовне зображення та позначення зварних швів і з'єднань
- •2.3. Неоднорідності зварних з'єднань
- •2.3.1. Механічна неоднорідність зварних з'єднань
- •2.3.2. Конструктивна неоднорідність
- •2.3.3. Неоднорідність залишкового напруженого стану
- •2.3.4. Технологічні дефекти
- •2.4. Заходи впливу на неоднорідності зварних з'єднань
- •2.4.1. Регулювання температурного стану
- •2.4.2. Управління металургійними процесами і процесами кристалізації у розплаві зварювальної ванни
- •2.4.3. Заходи впливу на фізичні процеси в металі у твердому стані
- •2.4.4. Зменшення інтенсивності напруженого стану
- •2.4.5. Дефекти техніки зварювання і конструктивна неоднорідність
- •2.5. Загальні вимоги до зварних з'єднань
- •2.6. Лабораторні роботи по розділу 2.6.1. Визначення механічних неоднорідностей у зварних
- •2.6.2. Оцінка напружень у моделях стикових зварних з'єднань методом фотопружності
- •Вимоги до звіту
- •Контрольні запитання
- •2.6.3. Оцінка напружень у моделях таврових зварних з'єднань
- •2.6.4. Оцінка напружень у моделях точкових зварних з'єднань методом фотопружності
- •3.1. Принципи розрахунку зварних з'єднань при статичному навантаженні
- •3.2. Робочі і з'єднувальні шви
- •3.3. Проектування зварних з'єднань зі стиковими швами
- •3.4. Проектування зварних з'єднань з кутовими швами
- •3.5. Проектування зварних з'єднань при контактному зварюванні
- •3.6. Проектування зварних з'єднань деталей різного профілю
- •3.7. Розрахункова графічна робота з розділу
- •1. Методичні вказівки до розв'язування задач
- •1.1. Вибір способу зварювання
- •1.2. Визначення виду напружено-деформованого стану
- •1.3. Складання розрахункових схем
- •1.4. Визначення напружень
- •1.5. Складання умови міцності зварних швів
- •1.7. Визначення потрібних величин
- •1.8. Креслення зварного з'єднання
- •Приклад розв'язування задач
- •3. Умови задач
- •3.4. Задача 4. Визначити необхідні розміри при приварюванні кутовим швом кронштейна 1 завтовшки з пластиною 2, враховуючи, що шов замкнений по діаметру (рис. 3.61).
- •Питання для самоконтролю до розділу 3
- •П роектування зварних з'єднань при циклічному навантаженні
- •4.1. Основні характеристики циклічного навантаження
- •4.2. Втома металів
- •4.3. Опір металів циклічному навантаженню
- •4.4. Опір малоцикловому руйнуванню
- •4.5. Опір багатоцикловому руйнуванню
- •4.6. Вплив деяких факторів на опір втомі зварних з'єднань
- •4.7. Розрахункова оцінка опору втомі
- •4.8. Заходи підвищення опору втомі зварних з'єднань
- •Питання для самоконтролю до розділу 4
- •5.1. Холодостійкість зварних з'єднань
- •5.2. Жароміцність зварних з'єднань
- •5.3. Корозійна стійкість і міцність зварних з'єднань
- •Питання для самоконтролю до розділу 5
- •6.1. Загальні принципи проектування
- •6.2. Класифікація зварних конструкцій
- •6.3. Проектування зварних балок
- •6.3.1. Приклад проектування зварної балки
- •6.3.2. Завдання на самостійну роботу
- •6.4. Проектування зварних колон
- •6.4.1. Проектування центральностиснутого стояка колон
- •6.4.2. Проектування ексцентрично стиснутого стояка колон
- •6.4.4. Бази колон
- •6.4.5. Приклади проектування зварних колон
- •Розв'язання:
- •4. Перевірка міцності і стійкості стояка:
- •3.7. Визначаємо гнучкість і, використовуючи таблицю 6.1
- •6.5.2. Проектування зварної ферми
- •6.5.3. Приклад проектування зварної ферми
- •Завдання на самостійну роботу
- •6.6.3. Днища і кришки оболонкових конструкцій
- •6.6.4. Вузли сполучення елементів оболонок
- •6.6.5. Резервуари для рідини
- •6.6.6. Газгольдери і сферичні резервуари
- •6.6.7. Труби і трубопроводи
- •6.6.8. Завдання для самостійної роботи
5.2. Жароміцність зварних з'єднань
Жароміцність - це здатність матеріалу чинити опір навантаженню при підвищеній температурі. Із зростанням температури підвищується теплова енергія коливання атомів, зростає інтенсивність дифузійних процесів і знижується міцність міжатомних зв'язків, що призводить до зменшення міцності металів і зростання їх пластичності. На рис. 5.2. наведені дані про характер впливу підвищення температури на механічні властивості деяких металів.
В умовах, сприятливих для пластичного деформування, в металах мають місце два процеси - повзучість і релаксація.
Повзучість - здатність металу до безперервного пластичного деформування при постійному навантаженні (рис. 5.3).
При
навантаженні стержня силою
в
ньому виникне загальна деформація
Під
час витримки при температурі
пружна
деформація
залишається
незмінною, а пластична складова
буде
безперервно зростати, що призведе і до
збільшення загальної деформації
Процес повзучості описується кривими
повзучості (див. розділ 1).
Релаксація
- це перехід пружної деформації в
пластичну в умовах постійної загальної
деформації
елемента,
що навантажується. Розтягнемо стержень
до деформації
і
жорстко його закріпимо. При цьому в
стержні утворяться напруження, пропорційні
пружній деформації
В
умовах постійної загальної деформації
і
витримки при температурі
пружна
деформація буде трансформуватися у
пластичну (тобто зменшуватися), що
призведе до зниження напружень
Процес
релаксації описується кривими релаксації
(див. розділ 1).
Основною
розрахунковою характеристикою міцності
металу зварного з'єднання при високих
температурах є межа тривалої
міцності
напруження,
які викликають руйнування при заданій
температурі за розрахунковий термін
експлуатації.
На рис. 5.5 представлені залежності номінальних граничних напружень від температури для деяких металів: 1 - сталь 10; 2 - сталь СтЗ;
За температурними умовами роботи доцільно виділити дві групи високотемпературних конструкцій: 1) працюючих при підвищених температурах (до 350-400°С для перлітних і 500°С для аустенітних сталей), коли ефектом повзучості можна зневажити; 2) працюючих при більш високих температурах в умовах повзучості.
Для
першої групи зварних вузлів, до яких
належать такі відповідальні конструкції,
як атомні енергетичні установки, барабани
парових котлів і судини нафтохімічних
установок, вибір матеріалів підпорядковується
загальним конструктивно-технологічним
вимогам. Сталі, звичайно використовувані
для зварних вузлів, що працюють у
нормальному діапазоні температур, можна
застосовувати й у даному випадку.
Виключення складають сталі, чуттєві
до деформаційного старіння в інтервалі
температур 200-300°С, а також до 475-градусної
крихкості. Наприклад, вироби з киплячих
низьковуглецевих сталей можна
застосовувати лише в умовах до 150-200°С,
а феритно-аустенітні сталі у відповідальних
зварних вузлах можна використовувати
лише до 300-350°С. Яких-небудь обмежень
застосування аустенітних сталей, що
зварюються добре, в умовах до 500°С, як,
наприклад сталі
не
існує.
При виборі матеріалу й умов виготовлення відповідальних зварних конструкцій з товщиною елементів понад ЗО мм (судини, барабани, ротори) для роботи при високих температурах необхідно враховувати не тільки надійну роботу виробу в експлуатаційних умовах, але і відсутність крихких руйнувань під час виготовлення, гідравлічних і інших випробувань. Тому матеріал конструкції повинен мати не тільки необхідні властивості при високих температурах, але також і необхідний запас в'язкості при кімнатній і зниженій температурах.
Вибір
матеріалів для зварних вузлів другої
групи більш складний. Крім загальних
вимог щодо здатності до зварювання, ці
матеріали повинні забезпечити максимальну
однорідність зварного з'єднання і
відсутність у ньому розвинутих маломіцних
і крихких зон при високих температурах.
Виходячи із зазначених вимог, найбільш
придатними матеріалами для розглянутих
умов роботи є сталі і сплави не здатні
до термічного зміцнення. Так, з теплостійких
сталей кращими є хромомолібденові
сталі: з аустенітних сталей - леговані
молібденом і в першу чергу сталі марок
і
Зварні
з'єднання, виконані з цих сталей, не
схильні до падіння міцності і крихких
високотемпературних руйнувань в
навколошовній зоні. Вони практично
мають однакову міцність з основним
металом.
Хоча розглянуті вище сталі за умовою експпуатаційної надійності є найпридатнішим матеріалом для зварних вузлів, що працюють в умовах повзучості, по жароміцності вони помітно поступаються сталям і сплавам здатним до термічного зміцнення, і тому застосовуються обмежено. Найбільш розповсюдженими для високотемпературних установок є хромомолібденованадійові сталі, жароміцні високохромісті сталі, леговані ванадієм, ніобієм і вольфрамом; аустенітні сталі і сплави на нікелевій основі з титаном, ніобієм і алюмінієм. У зв'язку з розвинутою неоднорідністю їхніх зварних з'єднань необхідно застосовувати додаткові заходи, що підвищують їхню жароміцність і виключають небезпеку крихких руйнувань. Найважливішими з них є:
1.
Обмеження міцності основного металу.
За цією вимогою межа міцності
хромомолібденованадійових теплостійких
сталей у зварних з'єднаннях не повинна
бути вищою
а
високохромистих жароміцних сталей
перевищувати
Застосування сталей і сплавів на нікелевій основі після електрошлакового і вакуумно-дугового переплаву.
Усунення концентраторів у районі з'єднання і розташування зварних стиків поза зоною дії високих напружень. З цією метою необхідно вводити обов'язкове зачищення чи механічну обробку зовнішньої і внутрішньої поверхонь стиків до плавного сполучення з основним металом. Розташовувати зварні стики поза зонами різкої зміни перетину елементів, що з'єднуються.
2. Проведення термічної обробки за режимами, що забезпечують відсутність утворення крихких зон. Кращими є режими високотемпературної термічної обробки - нормалізації з відпуском для зварних з'єднань теплостійких хромомолібденованадійових сталей і аустенизації з наступною стабілізацією для аустенітних сталей і сплавів на нікелевій основі.
