Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие ТОЭ.doc
Скачиваний:
10
Добавлен:
01.04.2025
Размер:
5.59 Mб
Скачать

1.1.2. Последовательность определения токов ветвей по законам Кирхгофа

1) Выбираются направления токов ветвей. Число токов равно числу ветвей схемы. Токи ветвей с источниками тока известны.

2) Записываются уравнения по первому закону Кирхгофа. Их число на единицу меньше числа узлов схемы.

3) Выбираются независимые контуры и направления их обхода.

4) Записываются уравнения по второму закону Кирхгофа для независимых контуров. Уравнения для контуров, включающих источники тока, не составляются.

5) В результате совместного решения уравнений, составленных по первому и второму законам Кирхгофа, определяются токи ветвей.

1.1.3. Метод контурных токов

В этом методе за неизвестные принимают токи независимых контуров (контурные токи), а токи ветвей выражают через контурные.

Рассмотрим правила формирования уравнений на примере схемы, приведенной на рис.1.3, в которой известны величины ЭДС и ток источника тока, а также все сопротивления.

Рис. 1.3

Выберем независимые контуры и направления их обхода. Допустим, что в каждом контуре протекает свой контурный ток, совпадающий с направлением обхода – I11, I22, I33. Выберем направления токов ветвей и составим уравнения по второму закону Кирхгофа для выбранных контуров (для контура с источником тока уравнение не составляется, так как I33 = J):

(1.1)

Выразим токи ветвей через контурные

I1 = I11; I2 = I11 I22; I6 = I3 = – I22; I4 = I22 + I33; I5 = I33; I33 = J; I5 = J.

и подставим в систему (1.1):

После группировки получим:

В общем виде для трехконтурной схемы с одним источником тока

(1.2)

где , - собственные сопротивления контуров 1 и 2, каждое из которых равно сумме сопротивлений, входящих в данный контур;

, , - общие сопротивления контуров. Общее сопротивление равно сопротивлению ветви, общей для рассматриваемых контуров. Общие сопротивления берутся со знаком "плюс", если контурные токи в них направлены одинаково и со знаком "минус", если контурные токи в них направлены встречно. Если контуры не имеют общей ветви, то их общее сопротивление равно нулю, в рассматриваемом примере ;

, - контурные ЭДС, каждая из которых равна алгебраической сумме ЭДС данного контура. ЭДС берется со знаком "плюс", если ее направление совпадает с направлением контурного тока, если не совпадает - со знаком "минус".

1.1.4. Последовательность определения токов ветвей методом контурных токов

1) Выбираются независимые контуры и направления контурных токов.

2) Записывается система уравнений в общем виде. Число уравнений равно числу независимых контуров схемы минус число контуров, содержащих источники тока. Количество слагаемых в левой части уравнения равно числу независимых контуров.

3) Определяются коэффициенты при неизвестных - собственные и общие сопротивления контуров, а также контурные ЭДС. Если общей ветвью контуров является источник ЭДС без сопротивления, то общее сопротивление этих контуров равно нулю.

4) Рассчитываются контурные токи.

5) Выбираются направления токов ветвей.

6) Определяются токи ветвей.