
- •40. Линейная модель множественной регрессии
- •41 . Метод наименьших квадратов (мнк).
- •42. Свойства оценок мнк.
- •43.Показатели качества регрессии.
- •44. Линейные регрессионные модели с гетероскедастичными остатками.
- •41. 44. Проверка выполнения предпосылок мнк. Обнаружение гетероскедастичности.
- •45.Линейные регрессионные модели с автокоррелированными остатками.
- •46.Обобщенный метод наименьших квадратов (омнк).
- •47.Регрессионные модели с переменной структурой (фиктивные переменные).
- •48.Нелинейные модели регрессии и их линеаризация.
- •49.Характеристики временных рядов.
- •50.Модели стационарных и нестационарных временных рядов, их идентификация.
- •51.Система линейных одновременных уравнений.
44. Линейные регрессионные модели с гетероскедастичными остатками.
Обнаружение гетероскедастичности. Для обнаружения гетероскедастичности обычно используют три теста, в которых делаются различные предположения о зависимости между дисперсией случайного члена и объясняющей переменной: тест ранговой корреляции Спирмена, тест Голдфельда— Квандта и тест Глейзера.
При малом объеме выборки для оценки гетероскедастичности может использоваться метод Голдфельда— Квандта.
Данный тест используется для проверки такого типа гетероскедастичности, когда дисперсия остатков возрастает пропорционально квадрату фактора. При этом делается предположение, что случайная составляющая распределена нормально.
Чтобы оценить нарушение гомоскедастичности по тесту Голдфельда— Квандта, необходимо выполнить следующие шаги.
Упорядочение п наблюдений по мере возрастания переменной х.
Разделение совокупности на две группы (соответственно с малыми и большими значениями фактора х) и определение по каждой из групп уравнений регрессии.
Определение остаточной суммы квадратов для первой регрессии
и второй регрессии
Вычисление отношений
(или наоборот) в числителе д.б. сумма квадратов. Полученное отношение имеет F распределение со степенями свободы k1=n1–m и k2=n–n1–m (где m – число оцениваемых парметров в уравнении регрессии).
Если
,
то гетероскедастичность имеет место.
Чем больше величина F превышает табличное значение F-критерия, тем более нарушена предпосылка о равенстве дисперсий остаточных величин.
---------------------------------------------------------------------------------------------------------
================================================================
41. 44. Проверка выполнения предпосылок мнк. Обнаружение гетероскедастичности.
Основную информацию для анализа качества регрессионного уравнения можно получить из ряда остатков. Иногда только по одному графику остатков можно судить о качестве аппроксимации. Остатки модели должны обладать опр. свойствами: несмещенность, состоятельность, эффективность. На практике проверка этих свойств сводится к проверке 5 предпосылок МНК: 1.случайный характер остатков (критерий поворотных точек), 2.независимость уровней в ряде остатков (d-критерий Дарбина-Уотсона), 3.соответствие ряда остатков нормальному закону распределения(RS-критерий), 4.равенство 0 мат. ожидания остатков, 5.гомоскедастичность остатков.
1.Свойство случайности проверяется с
помощью критерия поворотных точек или
критерия пиков. Уровень в ряде остатков
называется поворотной точкой, если он
одновременно больше или одновременно
меньше 2-ух соседних с ним уровней. Точкам
поворота приписывают значения 1, остальным
– 0. Свойство случайности выполняется,
если количество поворотных точек
справа означает, что от выражения внутри
них нужно взять целую часть. n
– количество уровней в ряде.
2.Для проверки свойства независимости (отсутствие автокорреляции) уровней в ряде остатков используют d-критерий Дарбина-Уотсона. В начале рассчитывают величину d по формуле: . Для этого критерия задаются 2 таблич. границы d1 и d2.
3.Для проверки соответствия ряда остатков нормальному закону распределения используют RS-критерий: RS =(Emax-Emin)/SE. Emax и Emin- соотв. наибольшее и наименьшее значения уровней в ряде остатков. SE- СКО. Если значение RS попадает в табличный интервал, то ряд остатков распределен по норм. закону.
5.Гомоскедастичность – постоянство дисперсии остатков по отношению к фактическим значениям фактора или показателя. Остатки называются гомоскедастичными, если они сосредоточены в виде горизонтальной полосы около оси xi, в противном случае остатки называют гетероскедастичными. Для исследования гомоскедастичности применяются различные тесты. Один из них называется тест Голдфельда-Квандта: 1) Упорядочение значений показателя у по степени возрастания фактора х. 2) Из упорядоченной совокупности убирают несколько «с» центральных значений: , р – число оцениваемых в модели параметров. В результате, получается 2 совокупности данных, в одной из них значения фактора будет наименьшими, а в другой – наибольшими. 3) Для каждой совокупности строят модель регрессии, по которой находят остатки: . Пусть S1 – большая сумма квадратов ошибок, а S2 – меньшая. 4) Определим отношение . 5) Полученное значение R сравнивают с табличным значением F-критерия Фишера. Если Fтабл<R, то предпосылка о гомоскедастичности нарушена. Чем больше R по отношению к Fтабл, тем более нарушена данная предпосылка. .
Линейные регрессионные модели с гомоскедастичными и гетероскедастичными, независимыми и автокоррелированными остатками.
Как видно из сказанного выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. В отличие от простейших моделей регрессионного анализа, рассмотренных в главе 5, здесь естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени.
Такие модели называют гетероскедастичными, а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.)
Далее, в главе 5 предполагалось, что погрешности независимы между собой. В терминах настоящей главы это означало бы, что автокорреляционная функция должна быть вырожденной - равняться 1 при равенстве аргументов и 0 при их неравенстве. Ясно, что для реальных временных рядов так бывает отнюдь не всегда. Если естественный ход изменений наблюдаемого процесса является достаточно быстрым по сравнению с интервалом между последовательными наблюдениями, то можно ожидать "затухания" автокорреляции" и получения практически независимых остатков, в противном случае остатки будут автокоррелированы.
Идентификация моделей. Под идентификацией моделей обычно понимают выявление их структуры и оценивание параметров. Поскольку структура - это тоже параметр, хотя и нечисловой (см. главу 8), то речь идет об одной из типовых задач эконометрики - оценивании параметров.
Проще всего задача оценивания решается для линейных (по параметрам) моделей с гомоскедастичными независимыми остатками. Восстановление зависимостей во временных рядах может быть проведено на основе методов наименьших квадратов и наименьших модулей, рассмотренных в главе 5 моделей линейной (по параметрам) регрессии. На случай временных рядов переносятся результаты, связанные с оцениванием необходимого набора регрессоров, в частности, легко получить предельное геометрическое распределение оценки степени тригонометрического полинома.
Однако на более общую ситуацию такого простого переноса сделать нельзя. Так, например, в случае временного ряда с гетероскедастичными и автокоррелированными остатками снова можно воспользоваться общим подходом метода наименьших квадратов, однако система уравнений метода наименьших квадратов и, естественно, ее решение будут иными. Формулы в терминах матричной алгебры, о которых упоминалось в главе 5, будут отличаться. Поэтому рассматриваемый метод называется "обобщенный метод наименьших квадратов (ОМНК)" (см., например, [3, с.212]).
Замечание. Как уже отмечалось в главе 5, простейшая модель метода наименьших квадратов допускает весьма далекие обобщения, особенно в области системам одновременных эконометрических уравнений для временных рядов. Для понимания соответствующей теории и алгоритмов необходимо профессиональное владение матричной алгеброй. Поэтому мы отсылаем тех, кому это интересно, к литературе по системам эконометрических уравнений [4-9] и непосредственно по временным рядам [10-25], в которой особенно много интересуются спектральной теорией, т.е. выделением сигнала из шума и разложением его на гармоники. Подчеркнем в очередной раз, что за каждой главой настоящей книги стоит большая область научных и прикладных исследований, вполне достойная того, чтобы посвятить ей много усилий. Однако из-за ограниченности объема книги мы вынуждены изложение сделать конспективным.