- •31 Способы снижения потерь
- •1. Компенсация реактивной мощности (крм)
- •2. Снижение технических потерь электроэнергии в распределительных сетях номинального напряжения 10-0,4 кВ
- •3. Оптимизация уровней напряжения
- •4. Оптимизация электрических режимов по реактивной мощности
- •5. Выравнивание графиков нагрузки и крм потребителей
- •Оптимизация работы системы охлаждения силовых трансформаторов, автотрансформаторов и шунтирующих реакторов.
- •Наиболее эффективные мероприятия по снижению потерь электроэнергии в распределительных сетях
- •32. Организационные и технические мероприятия по регулированию мощности на предприятии
- •33. Расчёт и измерение отклонений напряжения в сетях потребителей электрической энергии
- •34. Компенсация реактивной мощности в электрических сетях продольная и поперечная
- •Батареи статических конденсаторов
- •35 Анализ структуры потерь электроэнергии
- •36 Классификация электрических сетей
- •37. Схемы городских и сельских электрических сетей.
- •Питающие сети
- •Схемы сетей промышленных предприятий.
- •Схемы внешнего электроснабжения
- •Схемы внутреннего электроснабжения
- •Схемы загородных сетей
- •38. Режимы электрических сетей. Схемы электрических сетей
- •39 Несимметричные и несинусоидальные режимы электрических сетей
- •40 Расчет рабочих режимов эс
- •41. Расчет режимов сложнозамкнутых электрических сетей
- •42. Режимы нейтрали электрических сетей.
36 Классификация электрических сетей
Используемая терминология |
|||
Системообразующие |
Питающие |
Распределительные
|
|
330- 500 кВ |
110- 220 кВ |
||
Системообразующие |
Распределительные |
Сети электроснабжения отдельных потребителей |
|
первой ступени |
второй ступени |
||
Электропередачи сверхвысокого напряжения |
Районные |
Местные |
|
Классификация
электрических
сетей
может
осуществляться по роду тока, номинальному
напряжению, выполняемым функциям,
характеру потребителя, конфигурации
схемы сети и т. д. По роду тока различаются
сети
переменного
и постоянного
тока;
по напряжению: сверхвысокого
напряжения –
U
ном
330
кВ, высокого
напряжения
– U
ном
= 3
220
кВ, низкого
напряжения–
U
ном
<1 кВ. По конфигурации схемы сети делятся
на
замкнутые
и разомкнутые.
По выполняемым функциям будем различать системообразующие, питающие и распределительные сети. Системообразующие сети напряжением 330–1150 кВ осуществляют функции формирования объединенных энергосистем, объединяя мощные электростанции и обеспечивая их функционирование как единого объекта управления, и одновременно обеспечивают передачу электроэнергии от мощных электростанций. Системообразующие сети осуществляют системные связи, т. е. связи очень большой длины между энергосистемами. Режимом системообразующих сетей управляет диспетчер объединенного диспетчерского управления (ОДУ). В ОДУ входит несколько районных энергосистем–районных энергетических управлений (РЭУ).
не
обязательно
Питающие сети предназначены для передачи электроэнергии от подстанций системообразующей сети и частично от шин 110–220 кВ электростанций к центрам питания (ЦП) распределительных сетей – районным подстанциям. Питающие сети обычно замкнутые. Как правило, напряжение этих сетей ранее было 110–220 кВ. По мере роста плотности нагрузок, мощности электростанций и протяженности электрических сетей увеличивается напряжение распределительных сетей. Так, в последнее время напряжение питающих сетей иногда бывает 330–500 кВ.
Районная подстанция имеет обычно высшее напряжение 110–220 кВ и низшее напряжение 6–35 кВ. На этой подстанции устанавливают трансформаторы, позволяющие регулировать под нагрузкой [РПН (см. гл. 5)] напряжение на шинах низшего напряжения. Эти шины – ЦП распределительной сети, которая присоединена к ним.
Сети 110–220 кВ обычно административно подчиняютcя РЭУ. Их режимом управляет диспетчер РЭУ.
Распределительная сеть предназначена для передачи электроэнергии на небольшие расстояния от шин низшего напряжения районных подстанций к промышленным, городским, сельским потребителям. Такие распределительные сети обычно разомкнутые или работают в разомкнутом режиме. Различают распределительные сети высокого (U ном>1 кВ) и низкого (U ном<1 кВ) напряжения. В свою очередь по характеру потребителя распределительные сети подразделяются на промышленные, городские и сельскохозяйственного назначения. Ранее такие распределительные сети выполнялись с напряжением 35 кВ и ниже, а в настоящее время – до 110 и даже 220 кВ. Преимущественное распространение в распределительных сетях имеет напряжение 10 кВ, сети 6 кВ применяются при наличии на предприятиях значительной нагрузки электродвигателей с номинальным напряжением 6 кВ. Электрические сети 20 кВ применяются только в Латвийской энергосистеме. Напряжение 35 кВ широко используется для создания центров питания сетей 6 и 10 кВ в основном в сельской местности. Передача электроэнергии на напряжении 35 кВ непосредственно потребителям, т. е. трансформация 35/0,4 кВ, используется реже.
Для электроснабжения больших промышленных предприятий и крупных городов осуществляется глубокий ввод высокого напряжения, т. е. сооружение подстанций с первичным напряжением 110–500 кВ вблизи центров нагрузок. Сети внутреннего электроснабжения крупных городов – это сети 110 кВ, а в отдельных случаях к ним относятся глубокие вводы 220/10 кВ. Сети сельскохозяйственного назначения в настоящее время выполняют на напряжение 0,4–110 кВ, а также на 220 кВ при большой протяженности сельских линий в районах Сибири или Дальнего Востока.
не
обязательно
Существует несколько схем распределения электроэнергии: радиальные, магистральные и смешанные.
В случае радиальных схем, каждая подстанция питается отдельными линиями. В случае магистральных - к одной линии можно присоединить группу из нескольких городских трансформаторных подстанций.
Радиальные схемы электроснабжения отличаются своей надежность, но между тем к ним требуется большее количество проводов, кабелей и высоковольтной аппаратуры. Стоимость сетей за счет этого увеличивается. В крупных городах, как правило, радиальные и магистральные схемы применяются в зависимости от требований к надежности электроснабжения присоединенных потребителей.
Городские электрические сети напряжением 6-10 кВ характерны тем, что в любом из микрорайонов могут оказаться потребители всех категорий по надежности электроснабжения, что требует качественного построения схемы сети. Предназначена для подключения городских подстанций с двумя трансформаторами номинальной мощностью до 630 кВ, а часто применяют двухлучевую схему с АВР на стороне низшего напряжения с контакторной автоматикой. В случае поломки одного из лучей высшего напряжения или трансформатора нагрузка автоматически переключается на неповрежденный кабель и второй трансформатор. Для АВР на подстанциях с трансформаторами мощностью до 400 кВА применяются контакторы на ток 630 А, а при мощности 030 кВА - на ток 1000 А. Иногда в схемах для устройства АВР используют автоматические выключатели. На стороне низшего напряжения двухлучевая схема с АВР имеет значительные преимущества, такие как надежность в эксплуатации, быстродействие. В этом случае переключение производится за 0,2-0,3 с, тогда как АВР на стороне высшего напряжения выключается за 1-1,5с. Кроме того, эта схема самовосстанавливающаяся: при возникновении напряжения на отключившейся линии (луче) схема приходит в исходное положение без участия обслуживающего персонала.
Двухлучевая схема в отличие от петлевой с резервными перемычками, применяемой в небольших и средних городах стоит дороже. В случае петлевой схемы переключение выполняется вручную выездным персоналом, а ответственные объекты выделяют на отдельные линии.
