
- •3.1. Этапы развития нервной системы
- •3.1.1. Нервная система беспозвоночных животных
- •3.1.2. Нервная система позвоночных животных
- •3.2. Общие принципы координационной деятельности центральной нервной системы
- •3.2.1. Интегративная и координационная деятельность нервной клетки
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.4. Торможение
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •Основные проводящие пути спинного мозга
- •3.4. Продолговатый мозг и мост
- •3.4.1. Строение продолговатого мозга и моста
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5. Средний мозг
- •3.5.1. Морфофункциональная организация среднего мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.6. Мозжечок
- •3.6.1. Структурная организация и связи мозжечка
- •3.6.2. Функции мозжечка
- •3.7. Промежуточный мозг
- •3.7.1. Структура промежуточного мозга
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо—гипофизарная система
- •3.8. Лимбическая система
- •3.8.1. Анатомические структуры лимбической системы
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10. Кора больших полушарий
- •3.10.1. Морфофункциональная организация коры больших полушарий
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11. Электрические явления в коре головного мозга
- •3.11.1. Электроэнцефалография
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3.14.2. Сон как форма приобретенного поведения
- •Быстрый сон у животных и человека
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15. Основные механизмы работы мозга
- •3.15.1. Механизмы формирования условных рефлексов. Теория конвергенции
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17. Интегративная деятельность мозга и поведение
- •3.17.1. Доминанта и условный рефлекс
- •3.17.2. Высшие интегративные системы мозга
- •3.17.3. Эволюция ассоциативных систем
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19. Особенности высшей нервной (психической) деятельности человека
- •3.19.1. Физиологические основы психики
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •Межполушарные различия при зрительном восприятии
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека—оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •Рекомендуемая литература
3.3. Спинной мозг
Спинной мозг (рис. 3.5.) является филогенетически наиболее древним отделом ЦНС. В примитивной форме у ланцетника он представляет собой трубку, идущую вдоль всего тела. От спинного мозга отходят вентральные (передние, или двигательные) и дорсальные (задние, или чувствительные) корешки (рис. 3.6).
У ланцетника спинномозговых узлов (спинальных ганглиев) еще нет, чувствительные клетки рассеяны по ходу нервов или лежат в дорсальных отделах спинного мозга. У круглоротых уже намечается разделение спинного мозга на серое вещество, содержащее клетки и составляющее центральную часть, и окружающее его белое вещество из продольно идущих безмякотных волокон. Появляются и спинномозговые узлы. Они лежат на дорсальных корешках и состоят из биполярных чувствительных нейронов.
Более сложно устроен спинной мозг круглоротых. В связи с тем что у них происходит миелинизация нервных волокон, серое и белое вещество приобретают четкие границы. В сером веществе возникают вентральные и дорсальные рога, в белом веществе — вентральные и латеральные канатики. Вентральный и дорсальный корешки сливаются и дают начало смешанному нерву. Таким образом, спинной мозг круглоротых является прототипом спинного мозга высших позвоночных.
С появлением конечностей у амфибий возникают шейное и поясничное утолщения спинного мозга, в передних рогах серого вещества выделяются медиальная и латеральная группы клеток, образуются нисходящие и восходящие пути.
|
Рис. 3.5 Спинной мозг лягушки (А) и человека (Б) с вентральной стороны 1 — носовой мешок, 2 — головной мозг, 3 — глаз, 4 — зрительный тракт, 5 — продолговатый мозг, 6 — спинной мозг, 7 — плечевой нерв, 8 — вегетативный ствол, 9 — спинальный ганглий, 10 — седалищный нерв, 11 — обонятельная луковица, 12 — лобная доля, 13 — височная доля, 14 — 1—й шейный нерв, 15 — мозжечок, 16 — плечевое сплетение, 17 — 1—й грудной нерв, 18 —спинальный ганглий, 19 — 1—й поясничный нерв, 20 — поясничное сплетение, 21 — 1—й крестцовый нерв, 22— копчиковый нерв, 23—концевая нить, 24 — соединительные ветви, 25 — чревный нерв, 26 — симпатический ствол, 27 — симпатический ганглий, 28 — нижний шейный симпатический ганглий, 29 — средний шейный симпатический ганглий, 30 — затылочная доля, 31 — верхний шейный симпатический ганглий. |
|
Рис. 3.6 Спинной мозг и его взаимосвязь с периферическими нервными волокнами— чувствительным, двигательным. 1 — серое вещество, 2 — белое вещество, 3 — дорсальный (задний) корешок, 4 — спинальный ганглий, 5 — рецептор, 6 — эффектор, 7 — вентральный (передний) корешок, 8 — интернейрон. Стрелками показано направление распространения возбуждения.
|
Дальнейшая дифференцировка клеточно—волоконных структур происходит у рептилий и птиц. У них получают развитие восходящие пути, лежащие в центральном и боковом канатиках, сформированы дорсальный чувствительный путь и нисходящие связи. Происходит также дифференциация ассоциативных клеток, возникновение межсегментарных комиссуральных связей. У птиц хорошо развиты связи спинного мозга с вестибулярным аппаратом и мозжечком.
Еще большая дифференцированность серого и белого вещества наблюдается у млекопитающих. В дорсальных рогах появляются студенистое вещество и грудное ядро, в вентральных — отчетливо выделяются клеточные группы, возрастает число волокон в дорсальных и вентральных канатиках, появляется новый восходящий путь от шейных сегментов к оливам.
В организации спинного мозга млекопитающих существуют особенности, связанные с видовой принадлежностью животных. Спинной мозг у них имеет разную длину, разное количество сегментов, неодинаковую выраженность утолщений и пр. Все это зависит от числа позвонков, наличия хвоста, функции конечностей.
При изучении деятельности спинного мозга необходимо учитывать, что тело позвоночных животных и человека может быть разделено на пояса, или сегменты. Сегменты, получающие чувствительные волокна от одной отдельной пары дорсальных корешков, образуют метамер. Кожная область, в которой распределяются эти чувствительные волокна, называется дерматомом (рис. 3.7).
|
Рис. 3.7 Распределение дерматомов (областей чувствительной иннервации) на поверхности тела Буквы соответствуют отделам спинного мозга: С — шейному, Т — грудному, L — поясничному и S — крестцовому; цифрами показаны номера сегментов. От каждого участка кожи, обозначенного одинаковыми символами, чувствительные волокна отходят в один сегмент спинного мозга, например, чувствительность кожи в области СЗ шеи обеспечивается 3—м шейным сегментом, область L5 на голени — 5—м поясничным сегментом. |
|
Рис. 3.8 Позвоночный столб, спинной мозг и пограничный симпатический ствол 1 — симпатический ствол, 2 — симпатический ганглий, 3 — спинномозговой нерв, 4 — межпозвоночный диск, 5 — позвонок, 6 — остистные отростки позвонков, 7 — соединительнотканные оболочки, 8 — вентральный корешок, 9 — спинальный ганглий, 10 — дорсальный корешок, 11 — спинной мозг.
|
В процессе эволюции тело позвоночных изменило строение, в итоге возникли существенные отступления от идеальной метамерии. Например, у ланцетника метамерия делит длину тела на неодинаковые отрезки. Перестройку метамеров вызвало появление плавников у рыб. Метамерность особенно усложнилась в связи с развитием конечностей и приобрела сложную форму для рук и ног человека (рис. 3.7, 3.9).
Спинной мозг человека состоит из следующих сегментов (обозначаются латинскими буквами): 8 шейных —C(I—8) 12 грудных — Т(1—12), 5 поясничных — L(1—5), 5 крестцовых — S(1—5), 3 копчиковых — Со(1—3). Общее количество сегментов соответствует числу метамеров тела, однако каждый метамер получает иннервацию от двух—трех лежащих рядом сегментов. В сегментах спинного мозга заканчиваются отростки подавляющего большинства чувствительных нейронов тела, вступающие в составе дорсальных корешков. В спинном мозгу также начинаются почти все эфферентные нервы организма: двигательные (за исключением иннервирующих мышцы головы), все симпатические и часть парасимпатических. Они следуют в составе дорсальных и вентральных корешков (рис. 3.8).
Если у лягушки перерезать справа дорсальные, а слева вентральные корешки пояснично—крестцовых сегментов, то правая лапка полностью теряет чувствительность, но может совершать движения. Левая, наоборот, сохранит чувствительность, но окажется не способной к двигательным реакциям. Это явление было открыто независимо друг от друга Ч. Беллом (1811) и Ф. Мажанди (1822) и получило название закона Белла—Мажанди.
Характерной особенностью является соотношение волокон, входящих через дорсальные и выходящих через вентральные корешки. У кошки, например,
|
Рис.3.9 Схема метамерности тела в процессе эволюции. А— правильная последовательность расположения метамеров (теоретически возможный случаи для позвоночных); Б — нарушение правильной метамерности тела рыб в связи с образованием плавников; В — то же у человека в связи с образованием конечностей; F — сегменты головы; С — сегменты шеи; Т — грудные сегменты; L — поясничные сегменты; S — крестцовые сегменты. |
дорсальный корешок поясничного сегмента содержит около 12 000 волокон, тогда как вентральный — 6000. Следовательно, один и тот же двигательный нейрон является общим конечным путем для импульсов, поступивших от разных рецепторов и конкурирующих за общий конечный путь. Несмотря на такую организацию, степень интегративной деятельности спинного мозга ограничена по сравнению с другими вышележащими отделами ЦНС.
Классическими методами изучения функций спинного мозга являются перерезки или разрушения его структур с последующей оценкой нарушения функций. Большое развитие получило применение электрофизиологических методов, включающих регистрацию суммарных электрических процессов, вне— и внутриклеточные методы регистрации активности отдельных клеток.