
- •3.1. Этапы развития нервной системы
- •3.1.1. Нервная система беспозвоночных животных
- •3.1.2. Нервная система позвоночных животных
- •3.2. Общие принципы координационной деятельности центральной нервной системы
- •3.2.1. Интегративная и координационная деятельность нервной клетки
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.4. Торможение
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •Основные проводящие пути спинного мозга
- •3.4. Продолговатый мозг и мост
- •3.4.1. Строение продолговатого мозга и моста
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5. Средний мозг
- •3.5.1. Морфофункциональная организация среднего мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.6. Мозжечок
- •3.6.1. Структурная организация и связи мозжечка
- •3.6.2. Функции мозжечка
- •3.7. Промежуточный мозг
- •3.7.1. Структура промежуточного мозга
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо—гипофизарная система
- •3.8. Лимбическая система
- •3.8.1. Анатомические структуры лимбической системы
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10. Кора больших полушарий
- •3.10.1. Морфофункциональная организация коры больших полушарий
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11. Электрические явления в коре головного мозга
- •3.11.1. Электроэнцефалография
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3.14.2. Сон как форма приобретенного поведения
- •Быстрый сон у животных и человека
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15. Основные механизмы работы мозга
- •3.15.1. Механизмы формирования условных рефлексов. Теория конвергенции
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17. Интегративная деятельность мозга и поведение
- •3.17.1. Доминанта и условный рефлекс
- •3.17.2. Высшие интегративные системы мозга
- •3.17.3. Эволюция ассоциативных систем
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19. Особенности высшей нервной (психической) деятельности человека
- •3.19.1. Физиологические основы психики
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •Межполушарные различия при зрительном восприятии
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека—оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •Рекомендуемая литература
3.7. Промежуточный мозг
3.7.1. Структура промежуточного мозга
Промежуточный мозг в процессе эмбриогенеза развивается из переднего мозгового пузыря и образует стенки III желудочка. Топографически и функционально промежуточный мозг подразделяется на эпиталамус, таламус и гипоталамус.
Эпиталамус (надталамическая область), или надбугорье, состоит из поводка и железы внутренней секреции — шишковидного тела (эпифиза), которые формируют верхнюю стенку III желудочка. Таламус (От греч. thalamos — покой, опочивальня), или зрительный бугор, представляет собой состоящее из скопления серого вещества объемистое тело яйцевидной формы. Нижней и латеральной поверхностью таламус сращен с соседними частями мозга. Медиальная поверхность зрительного бугра образует боковую стенку полости III желудочка. Таламус является крупным подкорковым образованием, через которое в кору больших полушарий проходят разнообразные афферентные пути.
Дно III желудочка формирует группа структур, которые объединяют под названием гипоталамуса (подбугорья). Гипоталамус содержит большое количество ядер и является центром регуляции висцеральных функций организма (см. разд. 3.7.3).
3.7.2. Морфофункциональная организация таламуса
Нервные клетки таламуса группируются в большое количество ядер (до 40), которые топографически разделяют на переднюю, заднюю, срединную, медиальную и латеральную группы. По функции таламические ядра можно дифференцировать на специфические, неспецифические, ассоциативные и моторные.
В специфических, или проекционных, ядрах таламуса происходит синаптическое переключение сенсорной информации с аксонов восходящих афферентных путей на следующие, конечные нейроны, отростки которых идут в соответствующие сенсорные проекционные области коры больших полушарий. Повреждение специфических ядер приводит к необратимому выпадению определенных видов чувствительности. Эти экспериментальные факты свидетельствуют о том, что специфические ядра являются передаточной станцией на пути афферентных импульсов от периферических рецепторов к коре больших полушарий.
Среди основных проекционных ядер таламуса можно выделить заднее вентральное ядро, которое является специфическим ядром соматосенсорной системы. Оно разделяется на две части — заднелатеральное вентральное ядро, к которому подходят восходящие волокна спинно—таламического тракта и системы медиальной петли, несущие информацию от кожных рецепторов туловища, проприоцепторов мышц и суставного аппарата, и заднемедиальное вентральное ядро, к которому подходят соответствующие пути от ядер тройничного нерва, осуществляющего иннервацию лицевой части головы.
Микроэлектродные исследования нейронов заднего вентрального (вентро—базального) комплекса показали, что данное ядро, как и прочие специфические ядра, организовано по топическому принципу. Суть этого принципа состоит в том, что каждый нейрон активируется раздражением рецепторов определенного участка кожи, причем смежные участки туловища проецируются на смежные части вентробазального комплекса.
Специфичность данных нейронов проявляется также в том, что каждый из них возбуждается одним типом рецепторов. Соматотопический принцип организации сохраняется и на более высоком Уровне в соматосенсорной проекционной области коры больших полушарий (постцентральная извилина), с которой задний вентральный комплекс связан восходящими и нисходящими путями.
Специфическим ядром зрительной сенсорной системы является латеральное коленчатое тело (ЛКТ), составляющее вместе с медиальным коленчатым телом метаталамус и имеющее прямые связи с затылочными (зрительными) проекционными областями коры больших полушарий.
ЛКТ имеет слоистую структуру и организовано также по топическому принципу. Аксоны, идущие в ЛКТ из зрительного тракта, 'распределяются в нем с поразительной четкостью: три слоя ЛКТ связаны с ипсилатеральным (расположенном на той же стороне) глазом, а три остальные — с контрлатеральным. В каждом из слоев ЛКТ аксоны зрительного тракта вступают в синаптический контакт с четко ограниченными группами клеток. Нейроны ЛКТ обладают концентрическими рецептивными полями, центр и периферия которых антагонистичны и по—разному реагируют на изменение освещенности. Рецептивное поле нейрона ЛКТ представляет собой концентрически организованную совокупность рецепторов сетчатки, имеющую либо возбуждающий (при включении света) центр и периферическую тормозную часть, либо, напротив, тормозный центр и возбуждающую данный нейрон ЛКТ периферическую область.
Такая организация рецепторного поля позволяет нейронам ЛКТ хорошо реагировать на контраст при определении границы между темным и светлым и на суммарную яркость светового стимула.
У млекопитающих некоторые нейроны ЛКТ обладают цветоспецифичными рецепторными полями и могут возбуждаться или, наоборот, тормозиться в зависимости от длины волны светового стимула. Таким образом, нейроны ЛКТ, так же как и нейроны сетчатки, принимают участие в анализе зрительной информации. Об этом же свидетельствует наличие тормозных процессов в нейронах ЛКТ, субстратом которых являются цепи отрицательной обратной связи, образованные возвратными коллатералями аксонов этих клеток и промежуточными нейронами, имеющими тормозные окончания. По всей вероятности, возникающие в нейронах ЛКТ тормозные постсинаптические потенциалы служат для подавления следовых эффектов и всех побочных воздействий, которые мешают передаче сигнала через данный канал.
Восходящие пути слуховой системы, идущие из каудальных холмиков и по волокнам латеральной петли, проецируются в специфическое таламическое ядро — медиальное коленчатое тело (МКТ), от которого начинается путь, достигающий первичной слуховой коры в верхней части височных долей.
Медиальное коленчатое тело состоит из мелкоклеточной и крупноклеточной частей и обладает тонотопической специализацией своих нейронов. Так, например, нервные клетки мелкоклеточной части МКТ имеют довольно узкую настройку на восприятие звуков различной высоты и принимают участие в анализе и передаче акустической информации.
Таким образом, таламус является посредником, в котором сходятся все раздражения от внешнего мира (кроме запахов) и, видоизменяясь здесь, направляются к подкорковым и корковым центрам.
В специфические ядра таламуса проецируются афференты не только от экстероцепторов и рецепторов двигательного аппарата. Электрофизиологические исследования показали, что в заднем вентральном комплексе таламуса имеются области проекций блуждающего и чревного нервов, чувствительные волокна которых несут информацию от интероцепторов. В то же время таламус, как надсегментарный центр рефлекторной деятельности, имеет связи
|
Рис. 3.26 Проекции специфических (а) и неспецифических (б) ядер таламуса в кору больших полушарий 1 — сенсорные афферентные пути, 2 — ретикулярно—таламические пути, 3 — проекционная зона коры, 4 — ассоциативная зона коры.
|
с гипоталамусом, где сосредоточены главные вегетативные центры. Эти связи характерны для передних ядер таламуса и создают материальную предпосылку для участия этой структуры в системе регуляции висцеральных функций организма.
Следующую функциональную группу ядер таламуса составляют так называемые ассоциативные ядра. В отличие от специфических ядер они не могут быть отнесены к какой—либо одной сенсорной системе и получают афферентные импульсы от специфических проекционных ядер. Три ядра этой группы имеют связи с главными ассоциативными областями коры: ядро подушки связано с ассоциативной зоной теменной и височной коры, заднее латеральное ядро — с теменной корой, дорсальное медиальное ядро — с лобной долей. Четвертое ядро — переднее — имеет связи с лимбической корой больших полушарий. По—видимому, ассоциативные ядра участвуют в высших интегративных процессах, однако их функция изучена еще недостаточно.
К моторным ядрам таламуса относится вентролатеральное ядро, которое имеет вход от мозжечка и базальных ганглиев и одновременно дает
проекции в моторную зону коры больших полушарий. Это ядро включено в систему регуляции движений, и, как показал материал клиники, разрушение некоторых его участков ослабляет симптомокомплекс болезни Паркинсона.
Наконец, последнюю большую группу ядер таламуса образуют неспецифические ядра, которые функционально связаны с ретикулярной формацией ствола. К числу этих ядер относится медианная и внутрипластинчатая группы ядер таламуса, которые получают афферентные входы от волокон, восходящих из ретикулярной формации и, кроме того, имеет двусторонние связи со специфическими ядрами таламуса. В отличие от специфических ядер с локальными проекциями в коре филогенетически более древние неспецифические ядра обнаруживают диффузные проекции во все области коры (рис. 3.26). Этой структурной особенностью обусловлены их название и функция, которая состоит в регуляции возбудимости и электрической активности корковых нейронов.
Доказательства влияния неспецифических ядер таламуса на кору впервые были получены американскими исследователями Э. Демпси и Р. Моррисоном в 1942 г. Они показали, что при электрическом раздражении неспецифических ядер с ритмом 6—12 имп/с почти на всей поверхности коры ипсилатерального полушария регистрируются постепенно увеличивающиеся по амплитуде негативные волны, очень сходные с α—ритмом электроэнцефалограммы. Эти негативные волны появляются с латентным периодом 25 мс и более на 2—3—й стимул, достигают максимальной амплитуды на 5—6—й стимул, а затем начинают постепенно уменьшаться вплоть до полного исчезновения. Если раздражение продолжается, то негативные волны появляются вновь в такой же последовательности. Эта электрофизиологическая реакция была названа рекрутирующим ответом, или реакцией вовлечения.
В отличие от первичных ответов, которые регистрируют при раздражении специфических ядер, реакция вовлечения характеризуется большим латентным периодом, нарастанием и снижением амплитуды и отсутствием локальности или диффузностью вне связи с какой—либо специфической областью коры.
Дальнейший анализ этого электрофизиологического феномена показал, что периодическое увеличение и уменьшение негативных волн реакции вовлечения обусловлено лучшей или худшей синхронизацией активности таламических и корковых нейронов, а также суммацией постсинаптических потенциалов в большем или меньшем количестве нейронов. Уровень синхронизации может определяться динамикой возбуждающих и тормозных процессов при таламо—кортикальных циклических взаимодействиях.
Наличие этих взаимодействий используют для объяснения природы ритмической активности коры больших полушарий и, в частности, происхождения α—ритма электроэнцефалограммы (см. разд. 3.11.1).
При сопоставлении функций специфических и неспецифических ядер таламуса возникает резонный вопрос о взаимодействии этих двух систем, которые могут влиять на одни и те же нейроны коры больших полушарий. Как показали электрофизиологические исследования, восходящие влияния неспецифических ядер таламуса проявляются не в вызове разряда коркового нейрона, а в изменении его возбудимости. Неспецифические влияния из таламуса, повышая возбудимость корковых нейронов, облегчают их деятельность, при этом ответы корковых нейронов на импульсы, приходящие из специфических проекционных ядер, усиливаются. Вместе с тем неспецифические влияния могут иметь и противоположный знак и обнаруживать угнетающее действие на разряды корковых нейронов.
Существует точка зрения, что неспецифические ядра включены в восходящую активирующую систему и являются посредниками между корой и ретикулярной формацией ствола, которая получает информацию от всех органов чувств. Таким образом, неспецифические ядра передают активирующие влияния ретикулярной формации и участвуют в поддержании оптимального тонуса коры. Однако эта точка зрения не является общепризнанной, и некоторые исследователи рассматривают ретикулярную формацию и неспецифические ядра таламуса как две раздельные системы, контролирующие возбудимость корковых нейронов.
Было бы упрощением рассматривать таламокортикальные взаимодействия, как односторонние. Кора, в свою очередь, может оказывать тормозные и облегчающие влияния на таламические ядра. Эти влияния могут распространяться на специфические ядра по прямым кортикоталамическим путям и на неспецифические через кортикоретикулоталамические связи. Так, например, раздражение сенсомоторной зоны коры угнетает на длительное время возникновение реакции вовлечения. Эти факты свидетельствуют о наличии между таламусом и корой больших полушарий двусторонних циклических связей, которые играют важную роль в интегративной деятельности мозга. Не случайно таламокортикальная система связана с регуляцией таких физиологически важных состояний, как смена сна и бодрствования, сохранение сознания, развитие процессов внутреннего торможения.