
- •1. Классификация турбомашин.
- •2. Основные параметры, характеризующие турбомашины.
- •3. Основные геометрические характеристики.
- •4. Основные типы решеток и движений.
- •5. Схема проточной части.
- •6. Треугольники скоростей.
- •7. Уравнение сохранения энергии для цкм.
- •8. Уравнение сохранения энергии для тд.
- •9. Эксергия. Эксергетические потери и кпд.
- •10. Основные критерии подобия турбомашин.
- •11. Устройство и принцип действия поршневого компрессора.
- •12. Теоретический рабочий цикл поршневого компрессора.
- •13. Устройство и принцип действия поршневого детандера.
- •14. Процессы, протекающие в цилиндре с реальным хладагентом. Процесс заполнения мертвого пространства.
- •15. Процессы, протекающие в цилиндре с реальным хладагентом. Процесс наполнения.
- •16. Процессы, протекающие в цилиндре с реальным хладагентом. Процесс расширения.
- •17. Процессы, протекающие в цилиндре с реальным хладагентом. Процесс выхлопа.
- •18. Процессы, протекающие в цилиндре с реальным хладагентом. Процесс выталкивания.
- •19. Процессы, протекающие в цилиндре с реальным хладагентом. Процесс обратного сжатия.
- •20. Принцип действия криогенной газовой машины.
11. Устройство и принцип действия поршневого компрессора.
Поршневые компрессоры относятся к разряду компрессоров объемного действия, в которых процесс сжатия и перемещения газа происходят в замкнутом пространстве за счет изменения его объема.
В поршневых компрессорах таким пространством является рабочий цилиндр, а органом, воздействующим на газ с целью изменения его объема, – поршень.
Н
а
рис. 10.1 приведена принципиальная схема
поршневого компрессора. Основными
узлами компрессора, как видно из схемы,
являются рабочий цилиндр 1, поршень 2,
приемный рабочий клапан 3, являющийся
распределительным органом на поступлении
газа в компрессор, нагнетательный
рабочий капан 4, являющийся распределительным
органом на выходе сжатого газа из
цилиндра в напорный трубопровод.
Кривошипно-шатунная система, состоящая
из штока 5, крейцкопфа 6,
шатуна 7, кривошипа 8,
служит для преобразования вращательного
движения привода в возвратно-поступательное
движение поршня.
Расстояние между двумя крайними положениями поршня (плоскости А–А и В–В), в которых его скорость wп=0, называется ходом поршня S.
Работа поршневого компрессора сводится к следующему. При движении поршня 2 вправо (см. рис. 10.1) происходит заполнение увеличивающегося объема рабочего цилиндра газом, поступающим через открытый приемный клапан 3 из приемного трубопровода. Этот процесс называется процессом всасывания. По достижении поршнем плоскости В–В всасывающий клапан 3 закрывается. Начало движения поршня влево совпадает с началом процесса сжатия, который заканчивается в момент, когда рабочие параметры газа достигнут значений, соответствующих условиям нагнетания. Процесс сжатия заканчивается при достижении поршнем плоскости С–С. В этом положении открывается нагнетательный клапан 4, происходит процесс нагнетания, т.е. вытеснение газа поршнем в напорный трубопровод. С началом движения вправо нагнетательный клапан закрывается, параметры газа изменяются до значений, соответствующих условиям всасывания, после чего опять начинается процесс всасывания. Комплекс процессов всасывания, сжатия и нагнетания составляет цикл работы поршневого компрессора.
12. Теоретический рабочий цикл поршневого компрессора.
Рассмотрим рабочий цикл идеального поршневого компрессора. Под идеальным будем подразумевать компрессор, отвечающий следующим требованиям:
1) на пути движения газа в таком компрессоре отсутствуют гидравлические сопротивления, вследствие чего температура в периоды всасывания и нагнетания постоянна, а на всасывающих и нагнетательных рабочих клапанах отсутствуют перепады давления;
2) давление и температура газа под поршнем в период всасывания и нагнетания не изменяются;
3) после окончания процесса нагнетания в компрессоре не остается газа;
4) в компрессоре отсутствуют утечки газа через рабочие клапаны, в зазоре между поршнем и цилиндром;
5) затраты мощности на механическое трение отсутствуют.
Г
рафическое
изображение цикла в компрессоре
представлено на рис. 10.3.
Рассмотрим течение процесса компримирования газа, начиная с момента начала его сжатия, т.е. когда поршень компрессора занимает положение 2, соответствующее крайнему правому положению. В этот момент параметры газа, находящегося в цилиндре, были р1, v1, Т1, объем газа в цилиндре V1, а приемный клапан компрессора закрыт.
При движении поршня влево начинается процесс сжатия газа, т.е. процесс изменения параметров состояния.
Процесс нагнетания характеризуется линией сжатия 1–2, являющейся в общем случае политропой сжатия. В точке 2 заканчивается процесс сжатия газа, а его рабочие параметры будут p2, v2, Т2 и объем газа в цилиндре V2. В связи с тем, что давление p2 при отсутствии сопротивления нагнетательных клапанов равно давлению в трубопроводе после компрессора, момент окончания сжатия газа совпадает с моментом открытия нагнетательного клапана и началом процесса нагнетания.
Линия 2–3 характеризует процесс нагнетания, т.е. процесс выталкивания газа в напорный трубопровод, и называется линией нагнетания. В точке 3 поршень компрессора достигает крайнего левого положения. Скорость его в этой точке wл=0, что приводит к закрытию нагнетательного клапана. С началом движения поршня вправо происходит снижение давления с р2 до p1 – давления в приемном трубопроводе, что характеризуется линией снижения давления 3–4.
В точке 4 давление под поршнем становится равным давлению в приемном трубопроводе. Этот момент совпадает с моментом открытия приемного клапана и началом процесса всасывания.
Линия 4–2, характеризующая процесс всасывания, т.е. процесс заполнения рабочего цилиндра газом, называется линией всасывания.
В точке 1 заканчивается процесс всасывания. Это совпадает c началом процесса сжатия 1–2, т.е. с началом нового цикла компрессора.