Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ_к_лаб_работам_ч1.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
615.49 Кб
Скачать

Порядок выполнения

  1. Составить математическую модель движения центра масс ЛА при принятых допущениях.

  2. Дополнить программу по расчету траектории полета неуправляемого ЛА (разработанную при выполнении лабораторной работы №1) уравнениями для участка планирования.

  3. После отладки программы провести вычисление изменения параметров траектории от времени (исходные данные для расчета – в приложении 1), задавшись первоначальным значением угла планирования.

  4. Подобрать оптимальный с точки зрения увеличения дальности угол планирования.

  5. Построить траекторию при оптимальном значении угла планирования, определить следующие основные элементы траектории:

- максимальная высота траектории;

- скорость, дальность, угол наклона траектории в точке падения;

- полное время полета;

- параметры траектории в конце активного участка (скорость,

дальность, высоту).

6. Сравнить две траектории: баллистическую и с участком планирования, и сделать соответствующие выводы.

7. Сравнить профили скорости, проекции скорости и ускорений от времени для баллистической траектории и траектории с участком планирования, сделать соответствующие выводы.

Правила оформления отчета

Отчет оформляется на А4 в текстовом редакторе Word и должен содержать следующий разделы:

- титульный лист;

- исходные данные;

- теоретический материал;

- результаты расчета, графики;

- вывод по результатам.

Контрольные вопросы

  1. Что такое «планирование»?

  2. Закон изменения угла тангажа на участке планирования?

  3. Из каких участков состоит траектория с участком планирования?

  4. Чем обусловлено наличие индуктивного сопротивления?

  5. Что такое угол атаки?

  6. Как влияет наличие участка планирования на дальность полета?

Лабораторная работа №3 Расчет траектории полета корректируемого ЛА

Цель работы: рассчитать и построить траекторию корректируемого ЛА; исследовать влияние параметров управляющих органов на время моментного разворота ЛА.

Основы теории

Система уравнений движения

Движение корректируемых ракет можно рассматривать как одну из разновидностей или частный случай управляемого полета.

В отличие от управляемого полета, который предполагает обеспечение изменения параметров траектории по некоторому закону в достаточно широком диапазоне, коррекция траектории используется для обеспечения компенсации отклонений траектории неуправляемых ракет от расчетной, возникающих из-за начальных возмущений при старте, аэродинамической асимметрии ракеты, или для обеспечения программного разворота (склонения) ЛА на траектории при вертикальном старте, что часто применяется в ЗРК.

Особенностью корректируемого полета, является то, что управляющее (корректирующее) воздействие является кратковременным.

Склонение может реализовываться двумя способами:

– методом поперечного разворота;

– методом моментного разворота.

При поперечном развороте осуществляется поворот вектора скорости ракеты под действием нормальной составляющей управляющей силы. Ракета, в силу ее статической устойчивости, отслеживает поворот вектора скорости, отставая от него на сравнительно малый угол атаки. Поперечный разворот осуществляется с помощью двигателя поперечной тяги, который располагается в центре масс ракеты перпендикулярно к ее оси.

При моментном развороте осуществляется поворот (склонение) оси ракеты в плоскости стрельбы под действием управляющего момента, создаваемого силой Ру на органах управления (силой управления). Возникающая при этом сила Ру оказывается небольшой, поэтому вектор скорости ракеты поворачивается на малый угол , угол атаки становится большим, превышающим критическое значение . В данный ситуации аэродинамические органы управления оказываются неэффективными и задача угловой стабилизации может быть решена только с помощью газодинамических органов управления. При этом органы управления должны быть расположены как можно дальше от центра масс ЛА. В качестве органов управления может использоваться блок импульсных двигателей.

Скорость выхода ракеты из пускового контейнера обычно составляет . Она определяется ограничениями на осевую перегрузку. Программный разворот (склонение) ракеты начинается на высоте . Склонение может осуществляться как с работающим, так и с неработающим основным двигателем.

Траектория полета корректируемого ЛА состоит из трех участков (рисунок 5): вертикального старта, участка разворота (склонения) и баллистического участка снижения.

I – участок вертикального старта; II – участок моментного разворота;

III – участок баллистического снижения

Рисунок 5 – Траектория движения корректируемого ЛА

Рассмотрим математическую модель движения корректируемого ЛА с моментным разворотом.

Неуправляемый полет ЛА по баллистической траектории описывается уравнениями (1)-(10).

Участок моментного разворота согласно схеме сил, действующих на ЛА, представленной на рисунке 6, описывается следующими уравнениями:

, (14)

, (15)

, (16)

, (17)

где – координата центра масс ЛА, – координата точки приложения управляющей силы ЛА (координата центра тяжести органов управления), – момент инерции ЛА относительно экваториальной оси, проходящей через его центр масс.

Рисунок 6 – Схема сил, действующих на ЛА

при моментном развороте

Чтобы определить момент инерции ЛА относительно экваториальной оси, проходящей через центр масс ЛА, необходимо воспользоваться теоремой о переносе осей, в этом случае получим следующее выражение

(18)

где - координата центра масс i-го элемента конструкции; - момент инерции i-го элемента конструкции ЛА относительно экваториальной оси, проходящей через его центр масс.

Таким образом, уравнения (1)-(10) и (14)-(18) полностью описывают движение корректируемого ЛА по траектории с участком моментного разворота с учетом принятых допущений.

Численная реализация данной системы уравнений осуществляется методом Эйлера, приведенным в лабораторной работе №1.

Уравнение (16) в конечно-разностном виде выглядит следующим образом:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]