
- •Учебно-методическое пособие
- •«Концепции современного естествознания»
- •1. Конспект лекций
- •1. Конспект лекций
- •1.1. Культура, ее формы. Место естествознания в культуре
- •1.2. Генезис и логика развития науки и научной методологии
- •2.1. Корпускулярная и континуальная концепции постижения природы
- •2.2. Ваимодействие: близкодействие, дальнодействие
- •2.3. Структурные уровни организации природы
- •2.4. Элементарные частицы и связи в веществах
- •2.5. Принципы неопределенности, суперпозиции
- •3.1. Развитие взглядов на пространство и время в естествознании
- •3.2. Единство и многообразие свойств пространства и времени
- •3.3. Пространство и время в специальной и общей теории относительности
- •4.1. Симметрия: понятие, формы и свойства
- •4.2. Закон сохранения энергии
- •4.3. Динамические и статистические закономерности в природе
- •4.4. Системная организация мегамира
- •5.1. Развитие учения о составе вещества
- •5.2. Развитие учения о структуре молекул и химических процессах
- •5.3. Реакционная способность веществ и химическая кинетика
- •5.4. Развитие представлений об эволюционной химии
- •6.1. Структура Земли
- •6.2. Литосфера как абиотическая основа жизни
- •7.1. Особенности биологического уровня организации природы
- •7.2. Развитие биологии в дарвинский период
- •7.3. Уровни организации живой природы
- •7.4. Свойства живых систем
- •7.5. Гипотезы происхождения жизни на Земле
- •8.1. Клеточная теория живого
- •8.2. Основные генетические процессы биосинтеза белка
- •8.3. Генная инженерия и клонирование
- •8.4. Биоэтика
- •9.1. Человек как единство биологического и социального
- •9.2. Эмоции, творчество, работоспособность
- •9.3. Человек, организм, личность
- •9.4. Человек как креативный субъект
- •10.1. Биосфера и ее структура
- •10.2. Принципы эволюции и воспроизводства и развития живых систем
- •10.3. Биосфера и космические циклы
- •10.4. Ноосфера
- •11.1. Самоорганизация в неживой природе
- •11.2. Самоорганизация в живой природе
- •11.3. Принципы универсального эволюционизма
- •11.4. Структурность и целостность в природе
- •11.5. Принципы целостности современного естествознания
- •12.1. Методология постижения открытого мира
- •12.2. Принципы синергетики и синергетическая среда
- •12.3. Формирование инновационной культуры
- •2. Тематический план семинарских занятий
- •Тема 1. Естественно-научная и гуманитарная формы культуры
- •Тема 2. Физические концепции постижения природы в микро, макро и мегамирах
- •Принципы неопределенности, суперпозиции.
- •Единство и многообразие свойств пространства и времени.
- •Тема 3. Принципы сохранения, целостности в природе
- •Динамические и статистические закономерности в природе.
- •Тема 4. Химические и геологические концепции природы
- •Развитие представлений об эволюционной химии.
- •Тема 5. Биологические концепции постижения природы
- •Тема 6. Человек – единство биологической и социальной сущностей
- •Тема 7. Самоорганизация природы и универсальный эволюционизм
- •3. Лабораторные занятия [10]
- •5. Перечень тем творческих реферативных работ [1-3]
- •Структурность и целостность в природе.
- •Принципы универсального эволюционизма.
- •5. Учебно-методическое и информационное обеспечение дисциплины
5.3. Реакционная способность веществ и химическая кинетика
Химическая кинетика – раздел химии, изучающий закономерности протекания физико-химических процессов во времени и механизмы взаимодействия на атомно-молекулярном уровне. Химическая кинетика рассматривает зависимость скорости химической реакции от концентрации реагентов, температуры, свойств среды, электромагнитного излучения и других факторов. Скорость химической реакции (v) – изменение концентрации (АС) реагирующих веществ или продуктов реакции в единицу времени (t) в единице объема системы (для гомогенной реакции) или на единицу площади поверхности раздела фаз (для гетерогенной реакции) v = Д С/ At.
Зависимость скорости химических реакций от концентраций реагирующих веществ легко понять исходя из молекулярно-кинетических представлений. Молекулы газов, двигаясь в различных направлениях с довольно большой скоростью, неизбежно должны встречаться, сталкиваться друг с другом. Взаимодействие между молекулами, очевидно, может происходить только при их столкновениях. Следовательно, чем чаще сталкиваются молекулы, тем быстрее идет превращение исходных веществ в новые и тем больше скорость реакции. К. Гульдберг и П. Вааге в 1867 г. сформулировали закон действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ.
Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа: при повышении температуры на 10°С скорость большинства реакций возрастает в 2–4 раза. Отношение константы скорости при температуре t + 10° к константе при температуре t называется температурным коэффициентом скорости (у). В общем случае, если температура изменилась на Δt°, уравнение зависимости скорости реакции от температуры имеет вид: vt + Δt/ vt = yΔt/10.
Например, если температурный коэффициент скорости реакции равен 3, то во сколько возрастет скорость реакции при повышении температуры от 20 до 60 °С? Поскольку At = 60–20 = 40 °С, то, обозначив скорость реакции при 20 и 60 °С соответственно через v и v', можем записать изменения скорости реакции: v'/v = 340/10 = 34 = 81 раз. Сильное увеличение скорости реакции при повышении температуры связано с резким возрастанием числа активных частиц и числа активных столкновений.
Скорость химической реакции зависит от присутствия катализаторов и ингибиторов – веществ, которые изменяют скорость реакции, но сами в результате реакции остаются в химически неизменном состоянии и не расходуется. Вещества, ускоряющие реакцию, называются катализаторами, а замедляющие – ингибиторами. Иногда применение катализаторов может увеличить скорость реакции в 1000 и более раз.
Катализ – изменение скорости химической реакции в присутствии катализаторов. Скорость химической реакции возрастает в присутствии катализатора в связи с понижением энергии активации реакции через образование нестойких промежуточных соединений – активных комплексов. Процесс, идущий с образованием активного комплекса, кинетически более выгоден, так как требует меньших затрат энергии.
Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию. Такого рода реакции называются автокаталитическими. Например, кислота, образующаяся при гидролизе эфиров, катализирует этот гидролиз. Скорость автокаталитических реакций в течение некоторого времени (период индукции) мала, но по мере накопления продукта – катализатора растет, достигает максимума и снова уменьшается вследствие расхода исходного вещества. В таких реакциях возможно протекание явлений самоорганизации, приводящее к образованию пространственных и пространственно-временных диссипативных структур.
Ярким примером автокаталитического процесса является гомогенная периодическая химическая реакция окисления лимонной кислоты смесью бромата калия КВrО3 и сульфата церия Се (SО4)2, открытая и исследованная русскими химиками Б. Н. Белоусовым и А. М. Жаботинским в 1951 г. Смесь этих веществ, растворенная в разбавленной серной кислоте, дает реакцию восстановления церия: Се4+ (синего цвета) → Се3+ (красного цвета). Затем, когда свободный ион брома расходуется (выступает как ингибитор окисления церия), протекает обратная реакция окисления: Се3+ → Се4+. В результате возникает система, которая с идеальной периодичностью изменяет свой цвет с синего на красный, и наоборот. Эти колебания можно рассматривать как химические часы, а саму систему – как самоорганизующуюся. Начиная с некоторого момента числа колебаний системы, спонтанно возникают неоднородности концентрации и образуются устойчивые красные и синие слои.
Химическое равновесие. Принцип Ле Шателье. Многие химические реакции протекают таким образом, что исходные вещества целиком превращаются в продукты реакции или, как говорят, реакция идет до конца. Так, например, бертолетова соль при нагревании вся без остатка превращается в хлористый калий и кислород: 2КСlО3 = 2КСl + 3О2. Обратное получение бертолетовой соли из хлористого калия и кислорода оказывается невозможным. Такого рода реакции называются практически необратимыми или односторонними.
Процессы, которые при одних и тех же условиях могут идти как в ту, так и в другую сторону, называются обратимыми или двусторонними.
Чтобы показать, что химический процесс обратим, в уравнении реакции заменяют знак равенства двумя стрелками, направленными в противоположные стороны:
Fe3O4 + 4Н2 ↔ 3Fe + 4Н2О.
Реакцию, протекающую в направлении слева направо, принято называть прямой, противоположную реакцию – обратной.
Характерная особенность обратимых реакций заключается в том, что они не доходят до конца, если продукты реакции не удаляются из сферы взаимодействия (например, при реакциях между газами в закрытом сосуде). Исходные вещества, если даже они были и взяты в эквивалентных количествах, никогда не расходуются полностью на образование продуктов реакции. Реакция идет лишь до известного предела и затем как бы останавливается.
Если реакция обратима, т.е. она может протекать как в прямом, так и в обратном направлениях, то с течением времени скорость обратной реакции будет возрастать, а когда скорости прямой и обратной реакции становятся одинаковыми, наступает состояние химического равновесия:
N2 (г) + 3H2 (г) ↔ 2NH3 (г).
Установившееся между данными веществами химическое равновесие может сохраняться при неизменных условиях как угодно долго, но при изменении условий протекания реакции (температуры, давления, концентрации участвующих в реакции веществ) скорости прямого и обратного процессов изменяются неодинаково, и химическое равновесие нарушается. Направление этого смещения подчиняется принципу Ле Шателье: при всяком внешнем воздействии на систему, находящуюся в состоянии химического равновесия, в ней протекают процессы, приводящие к уменьшению этого воздействия.
Так, повышение температуры приводит к смещению равновесия в направлении реакции, сопровождающейся поглощением теплоты, т.е. охлаждением системы; повышение давления вызывает смещение равновесия в направлении уменьшения общего числа молей газообразных веществ, т.е. в направлении, приводящем к понижению давления; удаление из системы одного из продуктов реакции ведет к смещению равновесия в сторону прямой реакции; уменьшение концентрации одного из исходных веществ приводит к сдвигу равновесия в направлении обратной реакции.