Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
л.р.7-9.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.56 Mб
Скачать

Зміст

Лабораторна робота №7 Моделювання типових нелінійностей ..........………4

Лабораторна робота №8 Вивчення фазових портретів систем …................….9

Лабораторна робота № 9 Дослідження режиму автоколивань ....................…13

Список літератури ………………………………………………...…………… 21

Лабораторна робота № 7

Моделювання типових нелінійностей

7.1 Мета роботи

Придбання навичок моделювання типових нелінійностей за допомогою пакета програм "Matlab".

7.2 Зміст роботи

7.2.1 Вивчення теоретичних відомостей з теми лабораторної роботи;

7.2.2 Моделювання типових нелінійностей засобами пакета "Matlab".

7.3 Теоретичні відомості

Лінійні системи автоматичного керування (САК) описують лінійними диференціальними рівняннями. У цих рівняннях змінні та їх похідні зустрічаються лише у першому ступені й відсутні взаємні добутки змінних та їх добутки з похідними.

На практиці лінійних САК не існує, бо характеристики більшості елементів, що утворюють системи, нелінійні, й точні диференціальні рівняння систем є нелінійними. У них крім першого зустрічаються й інші ступені змінних та їх похідних. До нелінійних САК належать усі системи, до яких входить один або декілька нелінійних елементів. Таким чином, нелінійність систем обумовлена нелінійністю статичної характеристики одного з її елементів.

Найпростішими нелінійними елементами є статичні нелінійності. У них вихідна величина y залежить тільки від вхідної величини x, причому ця залежність є однозначною (рис. 7.1 а, в; рис. 7.2 а, б, г).

У динамічних нелінійностей вихідна величина y залежить як від вхідної величини x, так і від її похідної x. Характеристика динамічної нелінійності завжди неоднозначна. Це петльові характеристики (рис. 7.1 б; рис. 7.2 д, е). Більш складною динамічною нелінійністю є елемент із сухим тертям або ідеальне реле, що часто зустрічається в технічних пристроях (рис. 7.2 в).

Досить часто зустрічаються елементи, характеристики яких є частково-лінійними або апроксимуються частково-лінійними графіками (рис. 7.2).

Якщо у систему входить декілька нелінійних елементів, з’єднаних послідовно, паралельно або зустрічно-паралельно, то сумарну характеристику можна побудувати за певними правилами.

Паралельне з’єднання нелінійних елементів. При паралельному з’єднанні НЕ сумарну характеристику будують як геометричну суму нелінійних характеристик окремих елементів (рис. 7.3).

П ослідовне з’єднання двох нелінійних елементів. При послідовному з’єднанні нелінійних елементів вихідна величина одного НЕ є вхідною для дальшого НЕ (рис. 7.4, а). Тому під час побудови сумарної нелінійної характеристики систему координат другої характеристики повертають на 90, сполучаючи вісі і .

У першій чверті будують характеристику НЕ1, в другій – НЕ2, в третій проводять бісектрису, за допомогою якої у четвертій чверті отримують сумарну нелінійну характеристику (рис. 7.4 б).

Деякі типові нелінійності надані у блоці Nonlinear бібліотеки simulink пакета “Matlab” (рис. 7.5):

Rate Limiterобмеження швидкості; у блоці параметрів задається гранична швидкість зростання (rising slew rate) і гранична швидкість убування (falling slew rate) вхідного сигналу;

Saturationобмеження лінійності за виходом (насичення); у блоці параметрів можна задавати значення верхнього (upper limit) і нижнього (lower limit) обмеження;

Dead Zoneзона нечутливості (мертва зона); у блоці параметрів можна задавати ширину зони нечутливості (start of dead zone, end of dead zone);

Relayдвопозиційне реле з гістерезісом; у блоці параметрів задають ширину петлі, вказуючи моменти вмикання (switch on point) і вимикання (switch off point) реле, а також величину сигналу при увімкненому (output when on) і вимкненому (output when off) реле; за допомогою цієї нелінійності можна змоделювати ідеальну релейну характеристику (рис. 7.2, в), якщо задати моменти вмикання і вимикання нульовими;

Backlashлюфт, або мертвий хід. Якщо різниця між вхідною й вихідною величиною менша за величину мертвого ходу, зміна вхідної величини не впливає на вихідну величину. У протилежному випадку вихідна величина повторює змінювання вхідної величини з різницею, що дорівнює величині мертвого ходу. У блоці параметрів можна задавати ширину люфту (deadband width), а також початкове значення виходу (initial output);

Рис. 7.5 - Основні нелінійності бібліотеки simulink пакета “Matlab”

З а допомогою комбінацій цих нелінійностей можна отримати інші нелінійні елементи. Наприклад, послідовним з’єднанням елементів “Dead zone” і “Saturation” можна отримати статичну характеристику “Обмеження лінійності за виходом із зоною нечутливості” (рис. 7.6).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]