
- •Схемотехника цифровых устройств Учебное пособие Новосибирск
- •Кафедра сапр
- •Введение
- •1 Параметры цифровых микросхем
- •1.1 Уровни логического нуля и единицы
- •1.2 Входные и выходные токи цифровых микросхем
- •1.3 Параметры, определяющие быстродействие цифровых микросхем
- •1.4 Описание логической функции цифровых схем
- •2 Основные логические функции и элементы
- •2.1 Функция "не", инвертор
- •2.2 Функция "и", логическое умножение
- •2.3 Функция "или", логическое сложение
- •3 Основные схемотехнические решения цифровых микросхем
- •Диодно-транзисторная логика (дтл);
- •3.1 Диодно-транзисторная логика (дтл)
- •3.2 Транзисторно-транзисторная логика (ттл)
- •3.3 Логика на комплементарных моп транзисторах (кмдп)
- •4 Согласование цифровых микросхем между собой
- •4.1 Согласование микросхем из различных серий между собой
- •Согласование 3- и 5- вольтовых ттл микросхем.
- •Согласование 3- вольтовых ттл микросхем и 2,5- вольтовых кмоп микросхем.
- •4.2 Регенерация цифрового сигнала
- •5 Арифметические основы цифровой техники
- •5.1 Системы счисления
- •5.2 Преобразование чисел из одной системы счисления в другую
- •6 Комбинационные цифровые схемы
- •6.1 Законы алгебры логики
- •Закон одинарных элементов.
- •Законы отрицания.
- •Комбинационные законы.
- •Закон тавтологии (многократное повторение):
- •Правило поглощения.
- •Правило склеивания.
- •6.2 Построение цифровой схемы по произвольной таблице истинности
- •6.3 Декодеры
- •6.4 Шифраторы
- •Универсального кодера.
- •6.5 Мультиплексоры
- •6.6 Демультиплексоры
- •7 Генераторы
- •7.1 Усилительные параметры кмоп инвертора
- •7.2 Осцилляторные схемы
- •7.3 Мультивибраторы
- •7.4 Особенности кварцевой стабилизации частоты генераторов
- •7.5 Одновибраторы
- •8 Цифровые схемы последовательностного типа
- •8.1 Триггеры
- •8.2 Регистры
- •8.3 Счётчики
- •9 Индикаторы
- •9.1 Малогабаритные лампочки накаливания
- •9.2 Газоразрядные лампы
- •9.3 Светодиодные индикаторы
- •9.4. Динамическая индикация
- •9.5 Жидкокристаллические индикаторы
- •10 Разработка цифрового устройства на примере электронных часов
- •10.1 Разработка структурной схемы часов
- •10.2 Разработка принципиальной схемы часов
- •11 Синхронные последовательные порты
- •11.1 Ssi интерфейс (dsp порт)
- •11.2 Spi порт
- •11.3 I2с порт
- •12 Синтезаторы частоты
- •12.1 Схемы фазовой подстройки частоты
- •12.2 Схемы определения ошибки по частоте
- •12.3 Умножители частоты
- •12.4 Частотные детекторы, построенные на основе фапч
- •13 Цифровая обработка сигналов
- •13.1 Структурная схема цифрового устройства обработки сигнала
- •13.2 Особенности аналого-цифрового и цифро-аналогового преобразования
- •Критерии дискретизации по котельникову
- •Погрешность хранения
- •Погрешность выборки
- •Погрешность временного положение стробирующего импульса
- •13.3 Фильтры для устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •13.4 Дискретизация сигнала на промежуточной частоте (субдискретизация)
- •13.5 Статическая передаточная функция ацп и цап и погрешности по постоянному току
- •13.6 Погрешности преобразования переменного тока
- •Искажения и шум в идеальном n-разрядном ацп
- •14 Виды аналого-цифровых преобразователей
- •14.1 Параллельные ацп
- •14.2 Последовательно-параллельные ацп
- •14.3 Ацп последовательного приближения
- •15 Основные блоки микросхем цифровой обработки сигналов
- •15.1 Двоичные сумматоры
- •15.2 Цифровые умножители
- •15.3 Постоянные запоминающие устройства
- •15.4 Статические оперативные запоминающие устройства (озу)
- •15.5 Цифровые фильтры
- •16 Реализация передатчиков радиосигналов в цифровом виде
- •16.1 Генераторы с цифровым управлением (nco)
- •16.2 Микросхемы прямого цифрового синтеза (dds)
- •16.3 Квадратурные модуляторы (Up converter)
- •16.4 Интерполирующие цифровые фильтры
- •17 Реализация радиоприёмников в цифровом виде
- •17.1 Цифровые преобразователи частоты
- •17.2 Цифровой квадратурный демодулятор
- •17.3 Децимирующие фильтры
- •Список литературы
- •Часть 1. Учебное пособие. Новосибирск , 2006.
- •630102, Новосибирск, ул. Кирова, 86.
17.2 Цифровой квадратурный демодулятор
В цифровых приемниках перенос частоты осуществляется сразу на нулевую частоту. При приеме сигналов со сложными видами модуляции важен точный прием не только амплитудной, но и фазовой составляющей сигнала.
Для того чтобы не потерять фазу принимаемого сигнала, из сигнала с выхода цифрового фильтра основной избирательности выделяется его синфазная I и квадратурная составляющие. Для этого сигнал умножается на тригонометрические функции sin(прt) и cos(прt). На выходе умножителя на синусоидальную функцию формируется сигнал, описываемый следующей формулой:
(17.7)
После пропускания этого сигнала через цифровой фильтр низкой частоты на его выходе остается сигнал квадратурной составляющей входного сигнала.
На выходе умножителя на косинусоидальную функцию формируется сигнал, описываемый следующей формулой:
(17.8)
Этот сигнал тоже пропускается через фильтр низких частот с точно такой же частотной характеристикой. На выходе этого фильтра остается сигнал синфазной составляющей входного сигнала.
Структурная схема квадратурного демодулятора, реализованного в цифровом виде, приведена на рисунке 17.3.
Для формирования сигналов синуса и косинуса принимаемой частоты обычно применяется цифровой генератор, описанный выше по тексту этой книги.
После ограничения преобразованного по частоте сигнала по спектру, появляется возможность уменьшить частоту его дискретизации. Поэтому на выходе фильтров низкой частоты ставятся дециматоры. Обычно операции децимации и фильтрации удобно выполнять в одном устройстве. Такие устройства получили название децимирующих фильтров.
Рисунок 17.3 – Структурная схема квадратурного демодулятора
17.3 Децимирующие фильтры
Децимирующий фильтр предназначен для уменьшения частоты дискретизации обрабатываемого сигнала. Формально это можно было бы сделать, просто передавая на выход схемы каждый пятый или каждый второй отсчет входного сигнала. Устройство, выполняющее данную задачу, называется дециматором.
Задача усложняется тем, что сигнал на входе дециматора не должен содержать спектральных составляющих в полосе образов выходного полезного сигнала. Поэтому прежде чем выбрасывать лишние отсчеты входного сигнала его следует ограничить по полосе.
Существует ряд факторов, которые приводят к тому, что задача реализации фильтра-дециматора является трудной задачей. Первое это то, что входной поток данных поступает на вход этого фильтра с очень высокой скоростью. Фильтр должен выполнять вычисления в реальном времени с очень высокой скоростью.
Частоты в полосе за пределами рабочей полосы сигнала должны быть подавлены до заданного уровня, определяемого динамическим диапазоном полезного сигнала. При этом в полосе рабочего сигнала фильтр-дециматор не должен вносить амплитудных или частотных искажений. Кроме того, структура фильтра должна быть простой и он должен легко реализовываться в интегральном исполнении.
Децимирующий фильтр с конечной импульсной характеристикой
На рисунке 17.4 приведен пример амплитудно-частотной характеристики децимирующего фильтра. Этот фильтр способен подавить мешающие сигналы в полосе трех высокочастотных образов полезного сигнала.
Рисунок 17.4 – Амплитудно-частотная характеристика децимирующего фильтра
То, что фильтр пропускает на выход только четвертую часть входного спектра, означает, что на выходе подобного фильтра можно снизить частоту дискретизации сигнала в четыре раза.
Однородный децимирующий фильтр
Наиболее просто в цифровом виде реализовать рассмотренный нами ранее однородный фильтр, так как для его реализации не требуются умножители. Для однородного фильтра четвертого порядка эта формула выглядит следующим образом:
(17.9)
Структурная схема фильтра, реализующего формулу (16.9), приведена на рисунке 17.5.
Рисунок 17.5 – Структурная схема однородного фильтра седьмого порядка
При реализации такого фильтра потребуется 6 сумматоров. Во столько же раз уменьшится быстродействии цифрового фильтра. Можно несколько видоизменить структуру данного фильтра. Для сокращения количества выполняемых операций формула 16.9 может быть переписана в следующем виде:
(17.10)
Эта формула может быть реализована за два действия:
(17.11)
В таком случае для реализации фильтра потребуется два каскада. Первый каскад будет выполнять интегрирование, а второй — фильтр с конечной импульсной характеристикой всего с двумя ненулевыми коэффициентами, равными единице. Структурная схема нового фильтра приведена на рисунке 17.6.
Рисунок 17.6 – Структурная схема двухкаскадного фильтра, эквивалентного фильтру, приведенному на рисунке 16.5
В этой схеме максимальное время задержки сигнала определяется быстродействием сумматора и временем записи в регистр. Мы увеличили быстродействие почти в семь раз.
Ну а теперь вспомним, для чего нам потребовался фильтр. Правильно. Для уменьшения количества отсчетов в единицу времени. Так как операция децимации линейна, то вторую часть фильтра мы можем перенести на выход дециматора.
При таком схемном решении для формирования того же самого значения времени задержки нам потребуется только один регистр, так как на его вход тактовой синхронизации будет поступать частота в шесть раз меньше, чем частота синхронизации первого регистра. Получившаяся в результате всех преобразований структурная схема фильтра-дециматора приведена на рисунке 17.7.
Рисунок 17.7 – Структурная схема фильтра-дециматора, эквивалентного фильтру, приведенному на рисунке 16.6
Новая схема содержит всего два регистра и два двоичных сумматора, то есть данная схема получилась в три раза проще схемы однородного фильтра, приведенной на рисунке 16.5. Получившийся в результате преобразований фильтр трудно назвать однородным, однако для того, чтобы отобразить особенности его импульсной и амплитудно-частотной характеристик, сохраним название "однородный" и для этого фильтра.
Если по техническому заданию требуется еще больший коэффициент децимации по сравнению с рассмотренным выше случаем, то выигрыш при реализации однородного фильтра-дециматора по схеме, приведенной на рисунке 17.7, будет еще большим.
Хотелось бы напомнить, что при анализе характеристик однородного фильтра для получения приемлемого уровня подавления мешающего сигнала нам потребовалось включить друг за другом несколько каскадов.
Давайте включим последовательно друг за другом три фильтра-дециматора, как это показано на структурной схеме однородного фильтра, приведенной на рисунке 17.8.
Рисунок 17.8 – Структурная схема фильтра-дециматора, эквивалентного фильтру, приведенному на рисунке 16.7
На рисунке 17.9 приведена амплитудно-частотная характеристика четырехкаскадного однородного фильтра. Обратите внимание, что образ полезного сигнала сосредоточен около выходной частоты дискретизации.
Рисунок 17.9 – Амплитудно-частотная характеристика четырехкаскадного однородного фильтра-дециматора
Проанализировав амплитудно-частотную характеристику четырехкаскадного однородного фильтра можно определить, что этот фильтр обладает максимальным подавлением мешающих сигналов именно в полосе частот высокочастотных образов полезного сигнала. Четырехкаскадный однородный фильтр может обеспечить подавление мешающих сигналов, находящихся в зоне высокочастотных образов полезного сигнала до 90 дБ, что вполне достаточно для реализации 16-разрядного представления полезного сигнала.