
- •Схемотехника цифровых устройств Учебное пособие Новосибирск
- •Кафедра сапр
- •Введение
- •1 Параметры цифровых микросхем
- •1.1 Уровни логического нуля и единицы
- •1.2 Входные и выходные токи цифровых микросхем
- •1.3 Параметры, определяющие быстродействие цифровых микросхем
- •1.4 Описание логической функции цифровых схем
- •2 Основные логические функции и элементы
- •2.1 Функция "не", инвертор
- •2.2 Функция "и", логическое умножение
- •2.3 Функция "или", логическое сложение
- •3 Основные схемотехнические решения цифровых микросхем
- •Диодно-транзисторная логика (дтл);
- •3.1 Диодно-транзисторная логика (дтл)
- •3.2 Транзисторно-транзисторная логика (ттл)
- •3.3 Логика на комплементарных моп транзисторах (кмдп)
- •4 Согласование цифровых микросхем между собой
- •4.1 Согласование микросхем из различных серий между собой
- •Согласование 3- и 5- вольтовых ттл микросхем.
- •Согласование 3- вольтовых ттл микросхем и 2,5- вольтовых кмоп микросхем.
- •4.2 Регенерация цифрового сигнала
- •5 Арифметические основы цифровой техники
- •5.1 Системы счисления
- •5.2 Преобразование чисел из одной системы счисления в другую
- •6 Комбинационные цифровые схемы
- •6.1 Законы алгебры логики
- •Закон одинарных элементов.
- •Законы отрицания.
- •Комбинационные законы.
- •Закон тавтологии (многократное повторение):
- •Правило поглощения.
- •Правило склеивания.
- •6.2 Построение цифровой схемы по произвольной таблице истинности
- •6.3 Декодеры
- •6.4 Шифраторы
- •Универсального кодера.
- •6.5 Мультиплексоры
- •6.6 Демультиплексоры
- •7 Генераторы
- •7.1 Усилительные параметры кмоп инвертора
- •7.2 Осцилляторные схемы
- •7.3 Мультивибраторы
- •7.4 Особенности кварцевой стабилизации частоты генераторов
- •7.5 Одновибраторы
- •8 Цифровые схемы последовательностного типа
- •8.1 Триггеры
- •8.2 Регистры
- •8.3 Счётчики
- •9 Индикаторы
- •9.1 Малогабаритные лампочки накаливания
- •9.2 Газоразрядные лампы
- •9.3 Светодиодные индикаторы
- •9.4. Динамическая индикация
- •9.5 Жидкокристаллические индикаторы
- •10 Разработка цифрового устройства на примере электронных часов
- •10.1 Разработка структурной схемы часов
- •10.2 Разработка принципиальной схемы часов
- •11 Синхронные последовательные порты
- •11.1 Ssi интерфейс (dsp порт)
- •11.2 Spi порт
- •11.3 I2с порт
- •12 Синтезаторы частоты
- •12.1 Схемы фазовой подстройки частоты
- •12.2 Схемы определения ошибки по частоте
- •12.3 Умножители частоты
- •12.4 Частотные детекторы, построенные на основе фапч
- •13 Цифровая обработка сигналов
- •13.1 Структурная схема цифрового устройства обработки сигнала
- •13.2 Особенности аналого-цифрового и цифро-аналогового преобразования
- •Критерии дискретизации по котельникову
- •Погрешность хранения
- •Погрешность выборки
- •Погрешность временного положение стробирующего импульса
- •13.3 Фильтры для устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •13.4 Дискретизация сигнала на промежуточной частоте (субдискретизация)
- •13.5 Статическая передаточная функция ацп и цап и погрешности по постоянному току
- •13.6 Погрешности преобразования переменного тока
- •Искажения и шум в идеальном n-разрядном ацп
- •14 Виды аналого-цифровых преобразователей
- •14.1 Параллельные ацп
- •14.2 Последовательно-параллельные ацп
- •14.3 Ацп последовательного приближения
- •15 Основные блоки микросхем цифровой обработки сигналов
- •15.1 Двоичные сумматоры
- •15.2 Цифровые умножители
- •15.3 Постоянные запоминающие устройства
- •15.4 Статические оперативные запоминающие устройства (озу)
- •15.5 Цифровые фильтры
- •16 Реализация передатчиков радиосигналов в цифровом виде
- •16.1 Генераторы с цифровым управлением (nco)
- •16.2 Микросхемы прямого цифрового синтеза (dds)
- •16.3 Квадратурные модуляторы (Up converter)
- •16.4 Интерполирующие цифровые фильтры
- •17 Реализация радиоприёмников в цифровом виде
- •17.1 Цифровые преобразователи частоты
- •17.2 Цифровой квадратурный демодулятор
- •17.3 Децимирующие фильтры
- •Список литературы
- •Часть 1. Учебное пособие. Новосибирск , 2006.
- •630102, Новосибирск, ул. Кирова, 86.
14 Виды аналого-цифровых преобразователей
Как уже упоминалось выше по тексту, аналого-цифровые преобразователи сигналов используются в различных устройствах. Это означает, что к ним предъявляются требования, отличающиеся по быстродействию, количеству разрядов, потребляемой энергии, габаритам и т.д. В настоящее время не существует устройств, обладающих одинаково хорошими характеристиками по всем этим требованиям.
Одни преобразователи обладают прекрасным быстродействием, но большим потреблением энергии, другие обладают прекрасными характеристиками по разрядности, но их быстродействие оставляет желать лучшего.
Рассмотрим внутреннее устройство некоторых наиболее распространенных аналого-цифровых преобразователей.
14.1 Параллельные ацп
Простейшим по пониманию принципов работы (но отнюдь не по внутреннему устройству) является параллельный аналого-цифровой преобразователь.
Рассмотрим его работу на примере схемы трехразрядного параллельного АЦП, приведенной на рисунке 14.1.
Рисунок 14.1 – Принципиальная схема трехразрядного параллельного АЦП
В этой схеме аналоговый сигнал Uвх подается на соответствующий вход АЦП. Одновременно на другой его вход подается опорное напряжение UREF. Это напряжение при помощи резистивного делителя, состоящего из резисторов с одинаковым сопротивлением, делится на семь одинаковых уровней.
Основой параллельного преобразователя являются семь аналоговых компараторов, которые сравнивают входной сигнал с опорным напряжением, подаваемым на их второй вход. Аналоговые компараторы представляют собой обычные усилители-ограничители с дифференциальным входом.
Если напряжение на входе преобразователя меньше всех напряжений, подаваемых на опорные входы компараторов, то на всех выходах формируются нулевые уровни сигналов. Код на выходе линейки компараторов будет равен 0000000.
Постепенно повышая уровень входного сигнала можно превысить напряжение на опорном входе нижнего компаратора. В этом случае на его выходе сформируется уровень логической единицы. Код на выходе линейки компараторов примет значение 0000001. При дальнейшем увеличении уровня сигнала на входе АЦП код будет принимать значения 0000011, 0000111, и так далее. Максимальное значение кода 1111111 будет выдано на выходе аналого-цифрового преобразователя при превышении входным сигналом значения сигнала на опорном входе самого верхнего компаратора.
Итак, мы достигли напряжения полной шкалы аналого-цифрового преобразователя. Однако, как вы заметили, код, получаемый на выходе линейки компараторов, не является двоичным, поэтому для его приведения к двоичному виду потребуется специальная цифровая схема — преобразователь кодов.
Такие схемы мы уже умеем разрабатывать. Этому мы научились в первой части книги. Если внимательно посмотреть на полученные нами на выходе линейки компараторов коды, то мы увидим, что с таким видом кодов мы уже встречались — это коды, которые мы использовали при построении восьмеричных шифраторов. А это, в свою очередь, означает, что в качестве преобразователя кодов мы можем использовать уже хорошо знакомую нам схему восьмеричного шифратора.
Как видите, у нас получилась достаточно простая и быстродействующая схема. Что может быть быстрее простого устройства сравнения — компаратора! Более того! Мы уже знаем, что большое быстродействие аналого-цифрового преобразователя нам обычно требуется при оцифровке радио- и видео-сигналов. При работе с подобными сигналами нас обычно не интересует абсолютная задержка этого сигнала (в пределах десятков миллисекунд). Нам важнее возможность непрерывно получать поток цифровых отсчетов.
В этом случае следует обратить внимание, что при изготовлении компараторов на одном кристалле, разброс их параметров, в том числе и времени распространения сигнала с его входа на выход будет значительно меньше абсолютного значения задержки. В результате, частота дискретизации, подаваемая на тактовый вход подобного АЦП, может достигать нескольких гигагерц.
Итак, все хорошо и прекрасно? Но почему же я в начале главы сказал, что у параллельного АЦП сложное внутреннее устройство? Мы рассмотрели трехразрядный АЦП и получили, что для его работы требуется семь компараторов. А сколько компараторов потребуется для реализации восьмиразрядного АЦП? Как мы уже знаем, количество разрядов должно быть на единицу меньше количества двоичных кодов. Для восьмиразрядного АЦП потребуется уже 256 компараторов, для десятиразрядного — 1023! Именно поэтому параллельные АЦП редко выполняются с разрядностью, большей восьми.