
- •Схемотехника цифровых устройств Учебное пособие Новосибирск
- •Кафедра сапр
- •Введение
- •1 Параметры цифровых микросхем
- •1.1 Уровни логического нуля и единицы
- •1.2 Входные и выходные токи цифровых микросхем
- •1.3 Параметры, определяющие быстродействие цифровых микросхем
- •1.4 Описание логической функции цифровых схем
- •2 Основные логические функции и элементы
- •2.1 Функция "не", инвертор
- •2.2 Функция "и", логическое умножение
- •2.3 Функция "или", логическое сложение
- •3 Основные схемотехнические решения цифровых микросхем
- •Диодно-транзисторная логика (дтл);
- •3.1 Диодно-транзисторная логика (дтл)
- •3.2 Транзисторно-транзисторная логика (ттл)
- •3.3 Логика на комплементарных моп транзисторах (кмдп)
- •4 Согласование цифровых микросхем между собой
- •4.1 Согласование микросхем из различных серий между собой
- •Согласование 3- и 5- вольтовых ттл микросхем.
- •Согласование 3- вольтовых ттл микросхем и 2,5- вольтовых кмоп микросхем.
- •4.2 Регенерация цифрового сигнала
- •5 Арифметические основы цифровой техники
- •5.1 Системы счисления
- •5.2 Преобразование чисел из одной системы счисления в другую
- •6 Комбинационные цифровые схемы
- •6.1 Законы алгебры логики
- •Закон одинарных элементов.
- •Законы отрицания.
- •Комбинационные законы.
- •Закон тавтологии (многократное повторение):
- •Правило поглощения.
- •Правило склеивания.
- •6.2 Построение цифровой схемы по произвольной таблице истинности
- •6.3 Декодеры
- •6.4 Шифраторы
- •Универсального кодера.
- •6.5 Мультиплексоры
- •6.6 Демультиплексоры
- •7 Генераторы
- •7.1 Усилительные параметры кмоп инвертора
- •7.2 Осцилляторные схемы
- •7.3 Мультивибраторы
- •7.4 Особенности кварцевой стабилизации частоты генераторов
- •7.5 Одновибраторы
- •8 Цифровые схемы последовательностного типа
- •8.1 Триггеры
- •8.2 Регистры
- •8.3 Счётчики
- •9 Индикаторы
- •9.1 Малогабаритные лампочки накаливания
- •9.2 Газоразрядные лампы
- •9.3 Светодиодные индикаторы
- •9.4. Динамическая индикация
- •9.5 Жидкокристаллические индикаторы
- •10 Разработка цифрового устройства на примере электронных часов
- •10.1 Разработка структурной схемы часов
- •10.2 Разработка принципиальной схемы часов
- •11 Синхронные последовательные порты
- •11.1 Ssi интерфейс (dsp порт)
- •11.2 Spi порт
- •11.3 I2с порт
- •12 Синтезаторы частоты
- •12.1 Схемы фазовой подстройки частоты
- •12.2 Схемы определения ошибки по частоте
- •12.3 Умножители частоты
- •12.4 Частотные детекторы, построенные на основе фапч
- •13 Цифровая обработка сигналов
- •13.1 Структурная схема цифрового устройства обработки сигнала
- •13.2 Особенности аналого-цифрового и цифро-аналогового преобразования
- •Критерии дискретизации по котельникову
- •Погрешность хранения
- •Погрешность выборки
- •Погрешность временного положение стробирующего импульса
- •13.3 Фильтры для устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •13.4 Дискретизация сигнала на промежуточной частоте (субдискретизация)
- •13.5 Статическая передаточная функция ацп и цап и погрешности по постоянному току
- •13.6 Погрешности преобразования переменного тока
- •Искажения и шум в идеальном n-разрядном ацп
- •14 Виды аналого-цифровых преобразователей
- •14.1 Параллельные ацп
- •14.2 Последовательно-параллельные ацп
- •14.3 Ацп последовательного приближения
- •15 Основные блоки микросхем цифровой обработки сигналов
- •15.1 Двоичные сумматоры
- •15.2 Цифровые умножители
- •15.3 Постоянные запоминающие устройства
- •15.4 Статические оперативные запоминающие устройства (озу)
- •15.5 Цифровые фильтры
- •16 Реализация передатчиков радиосигналов в цифровом виде
- •16.1 Генераторы с цифровым управлением (nco)
- •16.2 Микросхемы прямого цифрового синтеза (dds)
- •16.3 Квадратурные модуляторы (Up converter)
- •16.4 Интерполирующие цифровые фильтры
- •17 Реализация радиоприёмников в цифровом виде
- •17.1 Цифровые преобразователи частоты
- •17.2 Цифровой квадратурный демодулятор
- •17.3 Децимирующие фильтры
- •Список литературы
- •Часть 1. Учебное пособие. Новосибирск , 2006.
- •630102, Новосибирск, ул. Кирова, 86.
Согласование 3- и 5- вольтовых ттл микросхем.
Если в цифровом устройстве одновременно используются микросхемы с 5- и 3-вольтовым питанием, то, кроме согласования микросхем по току, требуется согласовать их по логическим уровням. Выходное напряжение современных 3-вольтовых микросхем, таких как SN74LVT совпадает с ТТЛ уровнями нуля и единицы, поэтому они могут быть непосредственно нагружены на ТТЛ микросхемы с 5-вольтовым питанием.
Более того! Входные каскады большинства 3-вольтовых микросхем (например, серии SN74ALVT или SN74ALVC производства фирмы Texas Instruments) спроектированы так, что они выдерживают 5-вольтовое напряжение на входе. Вывод: микросхемы с 3- и 5- вольтовым питанием в ряде случаев можно соединять непосредственно (DATASHEETS фирмы Texas Instruments).
Будьте внимательны! Если в техническом условии (DATASHEETS) 3‑вольтовой микросхемы не оговорено, что она выдерживает на входе 5‑вольтовый потенциал, то вы можете вызвать «защелкивание» микросхемы и, как следствие, выход ее из строя.
Рисунок 4.2 – Логические уровни микросхем с пяти и трех вольтовым питанием
Согласование 3- вольтовых ттл микросхем и 2,5- вольтовых кмоп микросхем.
Как уже говорилось ранее, ТТЛ микросхемы в настоящее время уже не развиваются. Практически все современные микросхемы выполнены по КМОП технологии. Это же относится и к 2,5-вольтовым микросхемам. Порог срабатывания этих микросхем равен приблизительно 1,2 В. На рисунке 4.3 приведены выходные уровни 3-вольтовых и входные уровни 2,5- вольтовых микросхем.
Рисунок 4.3 – Выходные логические уровни 3-вольтовых и входные уровни 2,5- вольтовых микросхем
Как видно из этого рисунка, 2,5-вольтовые микросхемы будут воспринимать логические уровни 3- вольтовых микросхем безошибочно. В то же самое время, по техническим данным на 2,5-вольтовых микросхемах, таких как SN74ALVC или SN74ALVT, входное напряжение может достигать 3,6 вольта.
Похожая ситуация наблюдается и при обратном направлении прохождения сигнала (от 2,5- вольтовых микросхем к 3- вольтовым). На рисунке 4.4 приведены выходные уровни 2,5- вольтовых КМОП и входные уровни 3- вольтовых ТТЛ микросхем.
Рисунок 4.4 – Выходные логические уровни 2,5- вольтовых и входные уровни 3- вольтовых микросхем
При анализе рисунков видно, что выходные уровни 2,5- вольтовой микросхемы находятся внутри границ входного напряжения 3,3- вольтовой микросхемы. Вывод: микросхемы с 3- и 2,5- вольтовым питанием можно соединять непосредственно.
4.2 Регенерация цифрового сигнала
Микросхемы соединяются между собой печатными проводниками или плоскими кабелями. При прохождении цифрового сигнала по этим проводникам он неизбежно искажается. В основном это выражается в затягивании фронтов и поэтому на приёмном конце его приходится восстанавливать. Кроме того, часто приходится подавать на вход цифрового устройства обычные аналоговые сигналы (например, с выхода приёмника). Примерная форма сигнала на входе цифровой микросхемы приведена на рисунке 4.5.
Рисунок 4.5 – Пример сигнала на входе печатного проводника и входе цифровой микросхемы
Как видно из приведённого рисунка, сигнал на входе микросхемы может принимать любые значения, в том числе и запрещённые для цифровых микросхем. Как уже обсуждалось ранее, это может привести к выходу цифровых микросхем из строя. Кроме того, наличие глубоких провалов входного сигнала, обусловленных переходным процессом, может привести (и часто приводит) к возникновению импульсных помех на выходе приёмной микросхемы.
Для того чтобы можно было обрабатывать такие сигналы, применяются специальные схемы, восстанавливающие исходные логические уровни сигнала, такие как триггеры Шмитта. Триггер Шмитта представляет собой устройство, охваченное положительной обратной связью. Наличие положительной обратной связи приводит к практически мгновенному изменению напряжения на выходе схемы при превышении входным сигналом порогового напряжения. Принципиальная схема триггера Шмитта, построенная на двух инверторах приведена на рисунке 4.6.
Рисунок 4.6 – Принципиальная схема триггера Шмитта
В этой схеме положительная обратная связь образуется двумя резисторами. Глубина обратной связи определяется соотношением между этими резисторами. То, что часть сигнала с выхода схемы триггера Шмитта подаётся на её вход, приводит к тому, что вместо одного порога у неё имеется два порога. Один порог называется порогом срабатывания схемы (когда на выходе триггера Шмитта формируется единичный уровень). Второй порог называется порогом отпускания (когда на выходе триггера Шмитта формируется нулевой уровень). Из-за наличия двух порогов триггер Шмитта имеет ещё одно название – схема с гистерезисом.
Наличие двух порогов отчётливо видно на рисунке 4.7, где на вход триггера Шмитта подано синусоидальное напряжение. Входной и выходной сигналы исследуемой схемы на этом рисунке совмещены. В результате такого совмещения сигналов пороги срабатывания триггера Шмитта можно определить по точкам пересечения синусоиды и выходного сигнала.
Благодаря двум порогам схема нечувствительна к шумам на её входе. Ведь если триггер Шмитта перешёл в другое состояние, то для того, чтобы вернуть его в прежнее состояние нужно приложить напряжение, превышающее разность его порогов. Такое полезное свойство триггера Шмитта привело к его широкому использованию в схемах, подверженных влиянию шумов, таких как, например, шумоподавители ЧМ приёмников.
Рисунок 4.7 – Преобразование синусоидального сигнала в логический при помощи триггера Шмитта
В качестве примера можно привести сигнал на выходе компаратора (устройство с одним порогом срабатывания) при воздействии точно такого же синусоидального сигнала, как и на рисунке 4.7. Эти сигналы приведены на рисунке 4.8. Как видно из этого рисунка, в момент пересечения синусоидальным сигналом порогового уровня компаратора, на его выходе появляются усиленные шумы входного сигнала. Это приводит к формированию лишних импульсов на выходе схемы, что не всегда приемлемо для правильной работы цифрового устройства в целом.
Рисунок 4.8 – Преобразование синусоидального сигнала в логический при помощи компаратора
Следует отметить, что наличие двух порогов не приводит к изменению логики работы цифровых устройств. Посмотрите внимательно на сигналы, приведённые на рисунке 4.7. Если сдвинуть выходной сигнал относительно входного, то точки их пересечения совместятся на одном уровне. То есть выходной сигнал триггера Шмитта можно рассматривать просто как задержанный относительно входа усиленный и ограниченный сигнал.
Ещё одно применение триггеры Шмитта нашли в качестве входных каскадов в системных шинах микропроцессоров. Мы помним, что входы цифровых микросхем нельзя «бросать» в воздухе, однако при работе на шину обязательным условием является возможность отключения источников цифровых сигналов от шины. Для того чтобы при этом входы цифровых микросхем не оставались в воздухе, все проводники в шине подключают к источнику питания или к корпусу при помощи внешних резисторов.
Использование в качестве входных каскадов, подключённых к системной шине, триггеров Шмитта, позволяет избавиться от этих внешних резисторов.
Перечисленные выше причины привели к широкому распространению триггеров Шмитта. Условно-графическое изображение триггера Шмитта приведено на рисунке 4.9. Символ, изображённый на рабочем поле этого логического элемента говорит о наличии гистерезиса (разности порогов срабатывания).
Рисунок 4.9 –Условно-графическое обозначение триггера Шмитта
В настоящее время промышленностью производится достаточно много микросхем, в которых содержится сразу несколько триггеров Шмитта. Пороги срабатывания в этих схемах установлены заранее. Например, в микросхеме 555ТЛ2 содержится сразу шесть триггеров Шмитта с разносом порогов 800мВ.
В КМОП микросхемах пороги срабатывания и отпускания устанавливаются на трети напряжения питания. Примером подобной микросхемы может служить КМОП микросхема К1561ТЛ1, в которой содержится четыре логических элемента "2И", каждый вход которого обладает гистерезисом.
В настоящее время широко распространены микросхемы малой логики, где в одном очень маленьком корпусе, обычно с пятью выводами, размещается одиночный логический элемент. В качестве примера одиночного триггера Шмитта можно назвать микросхемы SN74AHC1G14 (триггер Шмитта с инверсией) или SN74LVC1G17 (триггер Шмитта без инверсии).